

Churer Schriften zur

Informationswissenschaft

Herausgegeben von

Wolfang Semar

Arbeitsbereich

Informationswissenschaft

Schrift 103

Deep learning for detecting integrity

risks in text documents

Urban Kalbermatter

Chur 2019

Churer Schriften zur Informationswissenschaft

Herausgegeben von Wolgang Semar

Schrift 103

Deep learning for detecting integrity

risks in text documents

Urban Kalbermatter

Diese Publikation entstand im Rahmen einer Thesis zum Master of Science FHO in

Business Administration, Major Information and Data Management

Referent: Prof. Dr. habil. Albert Weichselbraun

Korreferent: Prof. Dr. Rolf Assfalg

Verlag: Arbeitsbereich Informationswissenschaft

ISSN: 1660-945X

Chur, September 2019

Deep learning for detecting integrity risks in text documents 1

Churer Schriften zur Informationswissenschaft – Schrift 103 Master Thesis Kalbermatter

Abstract

Deep Learning has become a widely used method in the field of Natural Language

Processing including the field of text classification. It has been shown to perform better

than conventional classification solutions in many cases. The focus of this thesis is to

research and develop methods, which automatically identify discussions on integrity

related issues in news articles using Deep Neural Networks.

A literature review is presented with a focus on the state of the art in Deep Learning

for text classification. Further model architectures were identified, as well as

frameworks to implement the models. The Deep Neural Networks were implemented,

trained and evaluated. In an iterative process the networks were improved. Finally,

based on the evaluation, recommendations for the implementation of Deep Learning

methods for the detection of integrity risks were made.

Deep learning for detecting integrity risks in text documents 2

Churer Schriften zur Informationswissenschaft – Schrift 103 Master Thesis Kalbermatter

Index

Abstract ...1

Index ..2

List of Figures ..5

1. Intodruction ..6

2. Literature Review ...7

2.1 Integrity ... 7

2.2 Deep Learning .. 7

2.2.1 Deep Learning Modes ...14

2.2.2 Deep Learning Architectures ...15

2.2.2.1 Convolutional Neural Network (CNN) ...16

2.2.2.2 Recurrent Neural Network (RNN) ...18

2.2.2.3 Recurrent Convolutional Neural Network (RCNN)19

2.2.2.4 Bidirectional Recurrent Neural Network (BRNN).................................20

2.2.3 Neural Network Layers ..21

2.2.3.1 Dense Layers ..21

2.2.3.2 Activation Layers ...21

2.2.3.3 Dropout Layers ...23

2.2.3.4 Pooling Layers/Global Max Pooling Layers ..24

2.2.3.5 Word Embedding Layers ..24

2.2.4 Deep Learning Data Representations ...25

2.2.5 Deep Learning Frameworks ..26

2.2.5.1 Low-Level Deep Learning Frameworks ..26

2.2.5.1.1 Tensorflow ..27

2.2.5.1.2 Torch/Pytorch ...27

2.2.5.1.3 Theano ...27

2.2.5.1.4 Apache MxNet ..28

2.2.5.1.5 Deeplearning4J ..28

Deep learning for detecting integrity risks in text documents 3

Churer Schriften zur Informationswissenschaft – Schrift 103 Master Thesis Kalbermatter

2.2.5.2 High-Level Deep Learning Frameworks ..28

2.2.5.2.1 Keras ..28

2.2.5.2.2 Gluon ..29

2.2.5.2.3 Sonnet ..29

2.2.5.2.4 Swift for Tensorflow ..29

3. Methodology ..30

3.1 Description Of The Task ..32

3.2 Description of the data & data preprocessing ..33

3.3 Deep Neural Network Models ..34

3.3.1 Word Embeddings ...34

3.3.2 Network Models ...34

4. Evaluation ..37

4.1 Training Results ...37

4.1.1 Test Results Custom Word Embeddings ...38

4.1.2 Test Results Pre-Trained Word Embeddings ..39

4.2 Evaluation Of Quality And Sze Of Datasets ...40

4.3 Evaluation Of Overfitting And Regularization ...42

4.4 Evaluation Of Word Embeddings ...43

4.5 Evaluation Of Model Architecture ...46

5 Conclusion ..49

6. Literature ...50

Appendix..54

Appendix A Training Results for Custom Word Embedding Models54

CNN ..54

RCNN ...55

LSTM ..55

Double LSTM ..57

LSTM + Dropout ...58

Deep learning for detecting integrity risks in text documents 4

Churer Schriften zur Informationswissenschaft – Schrift 103 Master Thesis Kalbermatter

GRU ..59

Double GRU ...61

GRU + Dropout ...63

LSTM Bidirectional ..64

LSTM Bidirectional + Dropout ...65

Appendix B Training Results for Pre-Trained Word Embedding Models67

CNN ..67

RCNN ...68

LSTM ..69

Double LSTM ..71

LSTM + Dropout ...72

GRU ..74

Double GRU ...75

GRU + Dropout ...76

LSTM Bidirectional ..78

LSTM Bidirectional + Dropout ...79

Appendix C Training Results for Additional Word Embedding Models81

Various Custom Word Embedding Sizes ..81

Deeper RNN models ...86

Final Trainings ..90

Deep learning for detecting integrity risks in text documents 5

Churer Schriften zur Informationswissenschaft – Schrift 103 Master Thesis Kalbermatter

List of Figures

Figure 1: Categorization of Deep Learning within the field of Artificial Intelligence –

based on (Chollet, 2017a, fig. 1.1) .. 7

Figure 2: the Machine Learning approach compared to classical programming -

based on (Chollet, 2017a, fig. 1.2) .. 8

Figure 3: Visualization of a simple Deep Neural Network architecture with two hidden

layers – based on (Srivastava, Hinton, Krizhevsky, Sutskever, & Salakhutdinov,

2014, fig. 1a) ..10

Figure 4: Comparison of performance gain with an increase of training data size -

based on (Ng, 2018, p. 12) ..13

Figure 5: A typical CNN architecture. In deeper CNN-based networks, the CNN layer

and max pooling layer combination is repeated multiple times - based on (Lecun et

al., 1998)..16

Figure 6: A visualization of how CNN networks can learn patterns through multiple

layers in image recognition – based on (Chollet, 2017a, fig. 5.2)17

Figure 7: A visualization of a simple RNN model. The recurrent connection allows the

network to remember information of past sequences – based on (Chollet, 2017a) ...18

Figure 8: A typical RCNN model based on (Li & Wu, 2015)20

Figure 9: Visualization of a Bidirectional RNN. The recurrent connections are shared

in both the forward and backward direction – based on (Schuster & Paliwal, 1997, fig.

1) ...21

Figure 10: Example of a Neural Network with two hidden layers after applying

dropout – crossed neurons have been dropped, so that others gain more sensitivity –

based on (Srivastava et al., 2014, fig. 1b) ...23

Figure 11: Vizualization of the research design as an iterative processs...................32

https://htwchur-my.sharepoint.com/personal/t2z7bsi8df_htwchur_onmicrosoft_com/Documents/FHGR%20Work/Churer%20Schriften/MT_Urban_formatiert.docx#_Toc27667693
https://htwchur-my.sharepoint.com/personal/t2z7bsi8df_htwchur_onmicrosoft_com/Documents/FHGR%20Work/Churer%20Schriften/MT_Urban_formatiert.docx#_Toc27667693

Deep learning for detecting integrity risks in text documents 6

Churer Schriften zur Informationswissenschaft – Schrift 103 Master Thesis Kalbermatter

1. Intodruction

This thesis is part of the “Integrity Risk Monitor” project, which aims to advance integrity

management by adapting methods from the fields of information and computer

science. The project develops real-time integrity risk monitoring tools, with the goal

a. to support researchers in identifying and tracking integrity events,

b. to provide researchers with means to use data on past events, to develop

models that are suitable to explain these events and to predict future gaps

in integrity risk monitoring, and

c. to raise awareness of the affected stakeholders by publishing reports that

summarize the results of these studies.

The focus of this thesis is on one particular task of the project: the research and design

of methods, which automatically identify discussions on integrity-related issues. This

is achieved by applying Deep Learning methods.

Since there is a multitude of different Deep Neural Network models, architectures and

configurations, the aim is to identify, test and compare the most suitable ones for this

particular task. Deep Learning is being used for a multitude of Natural Language

Processing (NLP) tasks such as language modeling (Yoshua Bengio, Ducharme,

Vincent, & Janvin, 2003), paraphrase detection (Socher, Lin, Ng, & Manning, 2011)

and Word Embedding extraction (Mikolov, Chen, Corrado, & Dean, 2013) and has

been shown to perform better than conventional classification solutions in many cases

(Collobert et al., 2011). The performance of Deep Learning methods depends on both

the quality and nature of the input data, the aim of the application, as well as the Deep

Neural Network architectures and configurations being used. With the task being the

detection of integrity events, this thesis aims to find out, which, among a selection of

Deep Neural Network architectures and configurations performs best at classifying and

thus detecting integrity risks in text documents.

Deep learning for detecting integrity risks in text documents 7

Churer Schriften zur Informationswissenschaft – Schrift 103 Master Thesis Kalbermatter

2. Literature Review

2.1 Integrity

Integrity risks or integrity risk events are threats to the integrity of an organization or

person, which could potentially lead to a decrease in public reputation – such as money

laundering, corruption and fraud. This is usually referred to as “integrity violations” in

the literature. The early detection of an integrity risk is a big advantage, because it

gives the concerned parties the opportunity to react swiftly and accordingly to the

threat, while it is still containable. (Molina, 2018, pp. 1–2)

2.2 Deep Learning

Deep Learning is a sub-category of Machine Learning, which is a sub-category of

Artificial Intelligence. The field of Artificial Intelligence came to exist out of the question,

if machines can be made to think like humans. Though this question is still

unanswered, the field of Artificial Intelligence grew and is currently much broader than

what it originally was, focusing on creating machines and software that are able to do

intellectual tasks, which are normally done by humans. (Carbonell, Michalski, &

Mitchell, 1983, pp. 69–79)

Figure 1: Categorization of Deep Learning within the field of Artificial Intelligence – based on (Chollet,

2017a, fig. 1.1)

These tasks can be achieved by non-Machine-Learning approaches like the symbolic

AI approach, such as expert systems, in which a sufficient amount of explicit rules are

defined to solve specific problems and tasks. These approaches are useful to solve

well defined logical problems, but are not suitable to solve more complex and abstract

tasks. The scope of these expert systems is the amount of pre-defined explicit rules.

This makes expert systems more suitable for smaller tasks, because explicitly

programming rules and managing big expert systems require a lot of time and effort.

After the symbolic AI approach reached its peak success in the 1980s, it was clear that

Deep learning for detecting integrity risks in text documents 8

Churer Schriften zur Informationswissenschaft – Schrift 103 Master Thesis Kalbermatter

an alternative approach was needed for more complex and abstract tasks. This made

the Machine Learning approach gain in popularity and it soon replaced the symbolic

AI approach as the most popular method in Artificial Intelligence. (Chollet, 2017a,

Chapter 1; Schmidhuber, 2015, p. 4)

The difference between Machine Learning and classical programming, such as what

has been used in the symbolic AI approach, is the following: The latter requires

predefined rules and the output is a set of answers to a certain task, while in Machine

Learning answers are provided and the algorithm finds rules that make the detection

of these answers possible. (Chollet, 2017a, Chapter 1)

Figure 2: the Machine Learning approach compared to classical programming - based on (Chollet,

2017a, fig. 1.2)

In Machine Learning rules are learned rather than explicitly programmed. By using pre-

labeled datasets consisting of input samples and answers to the specific task, the

Machine Learning algorithm searches for statistical patterns, which can then be used

to define rules. This process is called “training” and the output model containing these

rules can be used as a classifier on unlabeled input samples or datasets to predict

solutions to the same task it was trained for. (Chollet, 2017a, Chapter 1)

The main precondition to being able to classify a dataset with a Machine Learning

approach is that the samples within the data are connected somehow by either

correlation or causation to a certain label, such as a class. In addition to that, to be

able to use Machine Learning to build an output model which is able to predict answers

to the specific task, the following three requisites need to be met (Gluon Contributors,

2017, Chapter 1):

- Input data needs to be defined and available. Depending on the task this data

can come in a variety of forms, in most cases it is either images, text, audio,

video or structured data such as web pages. In supervised learning labels or

Deep learning for detecting integrity risks in text documents 9

Churer Schriften zur Informationswissenschaft – Schrift 103 Master Thesis Kalbermatter

output examples need to be defined and linked to the input data. A single data

point within a dataset is called a sample.

- A Machine Learning model which generates rules out of the input data has to

be defined and build.

- A way to examine how successful the Machine Learning model is has to be

defined. This makes it possible to compare the performance before and after an

adjustment, through which can then be determined if the adjustments should be

kept or not. This step is called learning and is done by using a loss function and

an algorithm to minimize the loss function.

To make sure, that the training results are representative of data outside of the dataset,

which is used for training, the labeled input data is usually split up into two parts, the

training dataset and the verification or test dataset. The training dataset is used to train

the output model, which subsequently will be validated by applying the output model

to the validation dataset. The percentage of correctly solved tasks shows how well the

output model performs on a dataset, which is different to the one used in training. It is

thus important to keep track of two quantities: the training error and the test error or

their counterparts, the training accuracy and the test accuracy. The training error is the

error on the training dataset while the test error is the error on the verification dataset,

meaning the amount of samples whose outputs were not correctly predicted, thus do

not correspond to the output samples provided with the input data. The accuracy

depicts the opposite, what percentage of samples in a dataset were correctly

answered. (Gluon Contributors, 2017, Chapter 1)

Deep Learning describes a Machine Learning approach, which uses a multilayered

Neural Network to solve a task. An Artificial Neural Network is a system, which is able

to solve problems without explicitly programming it to do so based on a particular task.

Artificial Neural Networks were first described in the literature long before Deep

Learning, when in 1943 the concept was originally invented to understand and

represent the information processing capabilities of a biological brain and thus of

Biological Neural Networks. (McCulloch & Pitts, 1988)

An Artificial Neural Network consists of neurons, which are interconnected. A neuron

is a single point in a Neural Network, which receives an input and computes an output

by applying a mathematical function to it. Neural Networks used in Deep Learning are

called Deep Neural Networks. Deep Neural Networks are a subset of Artificial Neural

Deep learning for detecting integrity risks in text documents 10

Churer Schriften zur Informationswissenschaft – Schrift 103 Master Thesis Kalbermatter

Networks, which consist of a mix of layers stacked on top of each other. The difference

between Artificial Neural Networks and Deep Neural Networks is that Artificial Neural

Networks in their simplest form only have three layers, while the latter consists of

multiple hidden layers.

Figure 3: Visualization of a simple Deep Neural Network architecture with two hidden layers – based on

(Srivastava, Hinton, Krizhevsky, Sutskever, & Salakhutdinov, 2014, fig. 1a)

The composition of a Deep Neural Network is as follows: The first layer is called the

input layer, which takes in the input data. It is followed by one or multiple hidden layers,

which are followed by an output layer. A layer takes in data, extracts features out of

the data, which distinguish one input from another and sorts the inputs into different

categories, depending if these features are present or not. By stacking multiple layers

on top of each other, complex distinctions between different input data can be

achieved. The amount of layers present in a Deep Neural Network is called the “depth”

of the network. The more layers a Neural Network contains, the deeper it is, the less

layers it contains, the shallower it is. This is also the reason why Deep Learning is

called Deep Learning – It requires a deeper version of Neural Networks than the ones

used in traditional Machine Learning. Many different architectures for these layers have

been developed over the years to improve the performance of specific Deep Learning

applications. (Chollet, 2017a, Chapter 2.1; Schmidhuber, 2015, p. 4)

Deep learning for detecting integrity risks in text documents 11

Churer Schriften zur Informationswissenschaft – Schrift 103 Master Thesis Kalbermatter

The entirety of these layers is called a “model” or “network” (Chollet, 2017a, Chapter

1.1.4). In this thesis the word model is being used for the theoretical composition of a

specific network, while a network is an actual manifestation of a certain model. This is

not to be confused with the model, which is produced in the process of training, which

is referred to in this thesis as the “output model”. The neurons in a network are either

activated by the input data or the data forwarded by neurons in the prior network layer.

By defining so-called weights or parameters to the individual layers and their neurons,

the network calculates how to solve a certain task. At the beginning of the training, the

layers will usually get randomly assigned weights. The goal of the training is to adjust

the weights accordingly, so that the performance of the network improves. How much

these weights get adjusted is defined by the following three parameters: (Gluon

Contributors, 2017, Chapter 1)

- the loss function, also called cost function or objective, which measures

success, thus allows to see if what was done was a success or not,

- the gradient descent, which is an optimization algorithm, which is responsible

for calculating the extent of the changes to the weights on the basis of the results

of the loss function,

- and the learning rate, which is a parameter that defines at which rate old

information is overwritten by new information in each iteration.

The trainings consist of three repeating steps. First a prediction is made. For example,

if sample A has feature B and C it means that sample A has label D. The predicted

output score is compared with the actual output score, by using the loss function, which

enables the network to evaluate its adjustments. If the score improved the weights get

adjusted accordingly, if the score decreases the weights will also be adjusted

accordingly to reflect this discovery. For example, sample A has label D as a

predefined label, so the prediction was correct, this means the function is adjusted to

reflect that the likelihood of an input sample having label D is higher, if it contains both

feature B and C. This adjustment is done by using the gradient descent algorithm,

which adjusts the function until a local minimum is achieved. These adjustment steps

are called learning rate. The higher the learning rate, the faster the local minimum is

achieved, but this also brings the risk of overshooting the local minimum. The

mechanism used to make these adjustments possible is called the Backpropagation

Deep learning for detecting integrity risks in text documents 12

Churer Schriften zur Informationswissenschaft – Schrift 103 Master Thesis Kalbermatter

algorithm. The total of these adjustments make up the output model. (Gluon

Contributors, 2017, Chapter 1)

An additional parameter, which can be adjusted according to the specific needs at a

time, is the amount of epochs during a training session. An epoch is one iteration

through all the training data. The progress in each epoch is evaluated at the end of

each epoch by applying the output model to the validation dataset. The trick is to let

the Deep Neural Network go through as many epochs as needed but not more than

that. If the training does not go through enough epochs, then the risk is, that the model

is not adapted enough to the specific use case, but still resembles too much the initial

random values. This problem is also called Underfitting and can be solved by continued

training of the model. Too many epochs on the other hand lead to a problem called

“Overfitting”. Overfitting occurs when a model is too adapted to the training set, thus

loses the ability to generalize. (Hawkins, 2004).

The following factors make networks more susceptible to Overfitting: (Gluon

Contributors, 2017, Chapter 2)

- The number of degrees of freedom: This is the number of tunable parameters

in a Neural Network. If this number is higher, the network is more susceptible to

Overfitting.

- The value range of the weights: If the range the weights can take on is wider,

networks become more susceptible to Overfitting.

- The size of the training dataset: If the training dataset is small, the network is

more susceptible to Overfitting, because the bigger the training dataset, the

harder it is for the network to be over adjusted towards a big number of samples.

A way to measure the performance of a network and its output model and thus see if

Overfitting is a problem or not, is to look either at the accuracy or error measure of

each epoch and training. These values show the percentage of the trained and

evaluated input datasets, which have been correctly predicted. For each epoch, there

is an accurate measure for the training dataset as well as for the validation dataset. If

the accuracy of the validation dataset does not change significantly anymore, but the

one of the training dataset still does or if the accuracy of the training dataset grows

significantly faster than the accuracy of the test dataset, the following epochs will likely

lead to an output model which experiences Overfitting. (Chollet, 2017a, Chapter 4.4)

Deep learning for detecting integrity risks in text documents 13

Churer Schriften zur Informationswissenschaft – Schrift 103 Master Thesis Kalbermatter

There is a family of techniques and measures to counteract Overfitting, which is called

Regularization. Regularization consist of the following techniques and measures:

(Gluon Contributors, 2017, Chapter 2)

- Making the model less complex by decreasing the amount of parameters. For

example by leaving out certain input features that we know are not or less

relevant for the task.

- Forcing the model to keep the weights small or limit the speed of their growth,

for example by using a different loss function.

- Reinitializing the parameters if needed. Because the weights are randomly

assigned, a network which experiences Overfitting could theoretically be the

product of an unlucky set of initial weights.

- Using a special layer type called dropout layer, which disables certain neurons,

thus allows the network to focus on other features.

Figure 4: Comparison of performance gain with an increase of training data size - based
on (Ng, 2018, p. 12)

Current areas of applications for Deep Learning include: (Gluon Contributors, 2017,

Chapter 1; Pouyanfar et al., 2018)

- Face recognition - Speech recognition

- Object recognition - Autonomous driving

- Gesture recognition - Machine Translation

- Natural language processing - Ad Targeting

- Information retrieval - Handwriting Transcription

Deep learning for detecting integrity risks in text documents 14

Churer Schriften zur Informationswissenschaft – Schrift 103 Master Thesis Kalbermatter

- Data analysis

Deep Learning has been shown to perform equal or better in many of the above-

mentioned areas of application (Collobert et al., 2011; Schmidhuber, 2015, pp. 18–25).

Opposed to traditional methods the performance of Deep Learning depends heavily

on the size and quality of the input dataset. The performance of Deep Learning

increases more with a growing input dataset, than it does with traditional methods. With

smaller input datasets the difference in performance are generally not significantly

better (Ng, 2018, p. 12).

2.2.1 Deep Learning Modes

There are three different modes of Deep Learning: supervised, semi-supervised and

unsupervised Deep Learning. Supervised Deep Learning consists of a known input

and output, thus tries to find patterns in the input data of a certain output category,

which isolates it from data of a different output category. Apart from categorization

supervised learning is also used for regression and ranking of data. In unsupervised

Deep Learning on the other hand, only the input data is known, without any

classification or labels and the result is a classification based on categories found by

the learning algorithm. This process is called clustering. Semi-supervised Deep

Learning is a hybrid of both supervised and unsupervised Deep Learning. Usually in

semi-supervised Deep Learning, there is a small set of input data with corresponding

output data, as well as a larger set of uncategorized input data. Because of the high

requirements on computing power, unsupervised learning was long neglected and only

saw an increase in popularity in the last decade, with increasing and affordable

computing power and advancements in Deep Learning research. (Schmidhuber, 2015)

Supervised learning includes the following tasks: (Gluon Contributors, 2017, Chapter

1)

- Classification: In classification we look for feature vectors, which can be

certain shapes or colors in a picture or the grammar in a sentence. With the help

of these feature vectors the data can be split into two or more classes. If there

are only two classes, it is called a binary classification. A classification with more

than two classes is called a multiclass classification. Examples for classification

tasks are detection of cancers in CT images or a spam detection system for E-

mail systems.

Deep learning for detecting integrity risks in text documents 15

Churer Schriften zur Informationswissenschaft – Schrift 103 Master Thesis Kalbermatter

- Regression: In classification we ask the questions “what?” while in regression

we ask “how many?” or “how much?” Here we try to predict a numerical output

by applying statistical methods to a numerical input.

- Tagging: Tagging is a special form of multiclass classification, which allows one

input to have multiple classes. An example for this is image or text tagging.

- Search and ranking: Supervised Machine Learning can be used to predict a

ranking to a certain set of items. As an example the field of information retrieval

deals with scoring, retrieving and ranking data.

- Sequence learning: In sequence learning we take a sequential input, such as

a video, which consists of a number of sequential frames, where it is important

to look at the context and thus the connection between each of them. Machine

translation and speech recognition are also sequence learning tasks.

Examples for unsupervised Learning tasks are: (Chollet, 2017a, Chapter 4.1.2)

- Dimensionality reduction: Sometimes before a dataset is classified or

analysed it needs to be cleaned and its size needs to be reduced. One way to

do this is with Dimensionality Reduction, which reduces the amount of variables,

by identifying the unimportant ones.

- Clustering: The aim of clustering is to group similar samples together. An

example for Clustering is to find different customer segments in a customer

database, based on not known features, to get a better understanding of

similarities between different samples or groups of samples.

There are two other less prominent modes of Deep Learning called Reinforcement

Learning and Self-supervised learning. In Reinforcement Learning the network will get

inputs about its environment and tries to maximize some kind of reward by improving

its actions. This is for example used in autonomous video gaming. Self-supervised

Learning is similar to supervised learning, but it generates its own labels, usually by

using heuristic methods on the input dataset. (Chollet, 2017a, Chapter 4.1)

2.2.2 Deep Learning Architectures

Among the most common Deep Neural Network architectures the two architectures

Convolutional Neural Networks and Recurrent Neural Networks have been shown to

be most successful for supervised NLP Tasks, thus they and some variations and a

combination of them will be used and compared in this thesis. (Pouyanfar et al., 2018)

Deep learning for detecting integrity risks in text documents 16

Churer Schriften zur Informationswissenschaft – Schrift 103 Master Thesis Kalbermatter

The following chapters contain a description of the functionality of these architectures

as well as examples of how a model, which use these architectures, could look like

and their fields of application.

2.2.2.1 Convolutional Neural Network (CNN)

A Convolutional Neural Network, also known as CNN or ConvNet, is a class of

networks, which work with pattern recognition in data, which is represented in a grid-

like form. This makes CNNs especially suitable for images, because pictures can be

processed by representing each pixel as a value in a grid. In addition to CNN layers a

CNN based network architecture typically consists of fully connected layers and

pooling layers. Each CNN layer is typically followed by one pooling layer and the output

layer is usually preceded by one or multiple dense layers. The reason for including

pooling layers is to decrease the size of the network. Among the different types of

pooling layer, max pooling layers have been shown to work best for CNN-based model

architectures. (Lecun, Bottou, Bengio, & Haffner, 1998), (Chollet, 2017a)

Figure 5: A typical CNN architecture. In deeper CNN-based networks, the CNN layer and max pooling

layer combination is repeated multiple times - based on (Lecun et al., 1998)

A CNN is a dense Neural Network, which means that each neuron in one layer is

connected to each neuron in the following layer. Fully connected layers are used to

process data in different tensor shapes. Data in two dimensional tensor shapes is

usually processed by some kind of fully connected network, such as a CNN. In Keras,

which is the Deep Learning Framework used in this thesis, there are different types of

CNN layers that can be used, depending on the amount of dimensions the shape of

the data has. (Chollet, 2017a)

By extracting feature maps a CNN can perform a feature vector identification, which

corresponds to the predefined output category. The disadvantage of CNN is their

scalability, because CNN layers are fully connected layer, the needed computational

resources to compute the trainings increases highly with deeper models and larger

datasets (Fukushima, 1988; Lecun et al., 1998). The advantages of a CNN layer over

a dense layer is, that features learned by a CNN layer are translation invariant, which

Deep learning for detecting integrity risks in text documents 17

Churer Schriften zur Informationswissenschaft – Schrift 103 Master Thesis Kalbermatter

means that after features are initially identified, it can be recognized in any other

location of other samples. The second advantage of CNN layers over dense layers, is

that CNN layers can learn patterns through multiple layers. For example the first layer

learns one characteristic of a certain feature, while the second layer learns more

specific characteristics of this same feature. This allows CNN-based networks to detect

more abstract features, when multiple CNN layers are stacked on top of each other

(Chollet, 2017a).

Figure 6: A visualization of how CNN networks can learn patterns through multiple layers in image

recognition – based on (Chollet, 2017a, fig. 5.2)

The most well-known use case for CNN networks is in image and object recognition,

because of its abilities to learn about single features through multiple layers. This is

because visual data consists of many small shapes and different colors, which then

can be connected to form a certain object. The AlexNet model, which is inspired by

and build according to the model described above, achieved a historically high

performance in 2012 in the ImageNet challenge, which is seen as the reference

challenge in the field of image recognition. Another parameter, which made AlexNet

more successful than its predecessors, was that it could overcome the Vanishing

Gradient problem. Vanishing Gradient is a problem occurring in both CNN and RNN

architectures, where the gradient gets so small, that it is preventing the weights from

updating their values and thus stops the learning process of the network. AlexNet

Deep learning for detecting integrity risks in text documents 18

Churer Schriften zur Informationswissenschaft – Schrift 103 Master Thesis Kalbermatter

overcame the Vanishing Gradient problem by using the ReLu activation function

instead of Sigmoid functions (Krizhevsky, Sutskever, & Hinton, 2012). CNN has also

shown to be efficient at solving NLP problems, primarily sentence classification and

speech processing (Abdel-Hamid et al., 2014).

2.2.2.2 Recurrent Neural Network (RNN)

A Recurrent Neural Network, also called RNN or Feedback Neural Network are a

subset of Recursive Neural Networks, as well called RNN or RvNN. RvNN can make

predictions in tree-like structures. RNNs on the other hand work with sequential

information, since they can store information of past sequences. This allows a RNN to

see the full context of a single feature, instead of just the feature itself. Because of this

mechanism, they are most commonly applied in text and speech processing and

recognition. Since words change their meaning depending on their context, the

networks short-term memory enables it to see and include this context. The context in

this example would be the words before and after the words that are being processed,

as well as its position in the sentence, instead of just the word itself.

Figure 7: A visualization of a simple RNN model. The recurrent connection allows the network to

remember information of past sequences – based on (Chollet, 2017a)

The disadvantage of RNNs is how difficult it is to store memories over long periods of

time, because of their sensitivity to big chances during training in their short-term

memory. This is due to a problem called Vanishing Gradient Descent or Vanishing

Gradient problem, to which RNNs are susceptible to, due to the inheritance of the

gradient because of their short-term memory function. If the gradient is small in a

previous neuron, it influences the gradient of the following neuron, thus it will be even

smaller. This leads to an exponential decrease or growth of the gradient, which makes

Deep learning for detecting integrity risks in text documents 19

Churer Schriften zur Informationswissenschaft – Schrift 103 Master Thesis Kalbermatter

the network stop improving (Y. Bengio, Simard, & Frasconi, 1994). This issue halted

progress for RNN-based networks until 1997 until it was solved by introducing memory

blocks in the networks recurrent connections (Hochreiter & Schmidhuber, 1997; Lecun

et al., 1998).

These memory blocks were named gates and replace the summation units in each of

these layers. They are mechanisms, which decide which information to forget or add

to the memory. By doing that the network can remember the important and forget the

unimportant information and make predictions based on that data (Glorot & Bengio,

2010). The two most relevant architectures with this gate mechanism are called “Long

Short-Term Memory” (LSTM) and “Gated Recurrent Unit” (GRU). The downside of

adding these gate mechanisms is that they use significantly more processing power

because of their complexity compared to a simple RNN (Cho et al., 2014; Li & Wu,

2015), (Pouyanfar et al., 2018).

The LSTM solves the vanishing gradient problem by using an input, forget and output

gate in each sequence. The input gate defines how much of the new information should

be kept, the forget gate defines does the same for the existing data in the memory and

the output gate decides what of the current memory state should be shared with the

following sequence. GRU solves the problem with just two gates, a reset gate and an

update gate. The update gate is responsible for deciding to what degree the memory

is being updated, while the reset gate is responsible for resetting the computed state

by forgetting the previously computed state. (Chung, Gulcehre, Cho, & Bengio, 2014)

LSTM has shown to be efficient at solving tasks, which require looking at long-term

dependencies (Graves, 2012, Chapter 4). Because of the similar structure and

functionality as well as similar results for tasks based on long-term dependencies, it

can be assumed, that this is also true for GRU. GRU, which is a recently developed

architecture, seems to be a more efficient way of achieving similar results for these

tasks than with LSTM. There is no clear evidence towards which of the two gate

mechanisms is superior in their performance, but both of them clearly outperform a

vanilla RNN, while GRU is generally faster (Chung et al., 2014).

2.2.2.3 Recurrent Convolutional Neural Network (RCNN)

Recurrent Convolutional Neural Networks are a combination of RNN and CNN. RCNN

have been shown to perform better than RNN and CNN in both object recognition and

Deep learning for detecting integrity risks in text documents 20

Churer Schriften zur Informationswissenschaft – Schrift 103 Master Thesis Kalbermatter

text classification (S. Lai, Xu, Liu, & Zhao, 2015; Ming Liang & Xiaolin Hu, 2015). RCNN

can be implemented with both LSTM and GRU RNN architectures, as well as RNN

layers without a gate mechanism. An alternative name for the LSTM RCNN is LRCN

(Donahue et al., 2017).

Figure 8: A typical RCNN model based on (Li & Wu, 2015)

The input layer in a RCNN model is usually followed by the CNN layer and a max

pooling layer, as described in chapter 4.2.3.1, which is followed by the RNN layer, a

dense layer, as well as the output layer. The output layer is generally either a dense

layer or if needed a dropout layer. (Li & Wu, 2015)

2.2.2.4 Bidirectional Recurrent Neural Network (BRNN)

A special type of RNN are Bidirectional Recurrent Neural Networks also called BRNN,

which not only store information from past sequences, but also from future sequences.

This is done by training the network in both time directions simultaneously, by splitting

the state of neurons in a RNN network, so that one part is responsible for the positive

time direction and the other for the negative time direction. The outputs of both parts

of the network are usually merged after each layer, although summation after multiple

layers is also a possibility. (Schuster & Paliwal, 1997)

This structure provides the advantage of increased accuracy and an increase in

detected contextual features (Chollet, 2017a, p. 207). Since BRNN violate causality, it

cannot be used on temporal data, which cannot provide this, such as navigation tasks

or financial predictions. For spatial data, such as the data used in this thesis, on the

other hand, this is not a problem (Graves, 2012, Chapter 3.2.4).

The architectures used for the BRNN Deep Learning models are the same as for other

RNN models, since apart from their bidirectional layout, their functionality and

architecture is the same.

Deep learning for detecting integrity risks in text documents 21

Churer Schriften zur Informationswissenschaft – Schrift 103 Master Thesis Kalbermatter

Figure 9: Visualization of a Bidirectional RNN. The recurrent connections are shared in both the forward

and backward direction – based on (Schuster & Paliwal, 1997, fig. 1)

2.2.3 Neural Network Layers

A network or model consists of a sequence of layers. On top of the above-mentioned

Deep Neural Network architectures, the following layer types are used to build and

enhance the networks and their performance. The below-mentioned types are only a

selection of many more layer types being used in a Deep Neural Network.

2.2.3.1 Dense Layers

A dense layer, also referred to as fully connected layer, is a regular and linear Neural

Network layer, which is densely connected, which means that each neuron receives

inputs from every other neuron in the previous layer and each of the inputs is

connected to each of the outputs by a weight. This layer is usually followed by a non-

linear activation layer function. (Chollet & others, 2015)

2.2.3.2 Activation Layers

Activation layers compute which neurons to fire by applying an activation function on

the respective input (Chollet & others, 2015). An activation function calculates the

weighted sum of its inputs and adds a bias.

The following is a selection of activation functions: (Glorot, Bordes, & Bengio, 2011;

Nwankpa, Ijomah, Gachagan, & Marshall, 2018)

Deep learning for detecting integrity risks in text documents 22

Churer Schriften zur Informationswissenschaft – Schrift 103 Master Thesis Kalbermatter

- Step function: The output of a step function, also called a binary function, is

always either 0 or 1, depending on the value of x. A step function is not

applicable to Deep Learning, because the Gradient Descent algorithm cannot

update the weights due to their binary nature, thus cannot improve its

performance.

- Linear function: Contrary to a step function, a linear function is not restricted

in its range. Linear functions are rarely used because their linearity limits their

usefulness for Deep Learning applications. However, their advantage is, that

they offer high performance and are easy to optimize with Gradient Descent

methods. The Rectified Linear Unit activation function, also called ReLU

function, is a nearly linear function, thus benefits of these properties of linear

functions without running into a Gradient Descent problem, by rectifying values

below zero, by making them 0, thus making them unusable to the network.

- Logistic function: A logistic activation function has a range between 0 and 1.

It has the shape of the letter S. The problem with logistic activation functions is,

that they do not work well with Gradient Descent. This is because they tend to

be zero-centered, which makes the network too sensitive to the Gradient

Descent problem. An example of a logistic activation function is the Sigmoid

function. Sigmoid functions are mostly used in feedforward Neural Networks to

get a binary predicting probability based output. Another logistic function is the

Softmax function, which compared to the Sigmoid function is mostly used for

multiclass classification tasks.

- Hyperbolic tangent function: An example of a hyperbolic tangent activation

function is the Tanh function. The Tanh function has a range of -1 to 1 and has

been shown to perform better than the Sigmoid function. The problem with the

Tanh function is, that they can only achieve a gradient of 1 if the input value is

0, which renders some neurons unusable by setting their weight to 0. This is a

condition called dead neurons. The Tanh function is mostly used in language

modelling and speech recognition.

The most commonly used activation functions used in Deep Learning are Sigmoid,

ReLU and Softmax. The current trend is to use ReLU for the hidden layers to

counteract the gradient descent problem and Softmax or Sigmoid for the output layer.

Which one of the latter two is used for the output layer, depends on the desired output.

Deep learning for detecting integrity risks in text documents 23

Churer Schriften zur Informationswissenschaft – Schrift 103 Master Thesis Kalbermatter

Sigmoid is used, if the output is a binary classifier and Softmax is used if the output is

a multiclass output. (Nwankpa et al., 2018)

In Keras activation functions can either be used by adding an activation layer to the

network or by adding the activation argument to any forwarded layer. Keras supports

all of the most well-known activation functions and allows the import of custom

activation functions. (Chollet & others, 2015)

2.2.3.3 Dropout Layers

The purpose of a dropout layer is to counteract Overfitting. Dropout layers have

shown to be successful in counteracting Overfitting in both CNN and RNN based

networks. A dropout layer does this by setting the output of a selection of single

neurons to 0. This makes neighboring neurons more sensitive and increases the size

of changes in the weights of these neurons. The dropout layer is inserted before a

linear or nearly linear activation function. (Srivastava et al., 2014)

Figure 10: Example of a Neural Network with two hidden layers after applying dropout – crossed

neurons have been dropped, so that others gain more sensitivity – based on (Srivastava et al., 2014,

fig. 1b)

The original paper applies the dropout function on each dense layer before the output.

The same can be applied to LSTM networks (Zaremba, Sutskever, & Vinyals, 2014).

Recent research shows, that it is also possible to use dropout layers after the activation

Deep learning for detecting integrity risks in text documents 24

Churer Schriften zur Informationswissenschaft – Schrift 103 Master Thesis Kalbermatter

layer of a CNN layer, although at a smaller rate of 0.2 instead of 0.5 (Park & Kwak,

2017). The dropout layers take a 1-dimensional tensor as an input, so a flatten layer

has to be used beforehand to adjust the tensors if they are higher dimensioned.

2.2.3.4 Pooling Layers/Global Max Pooling Layers

Max pooling layers are used to aggressively downsample networks and thus to reduce

the number of neurons to compute. Usually pooling layers reduce the amount of

neurons by a factor of 2. This down sampling process increases the network’s ability

to generalize features. In Keras there are different pooling layer types, which have to

be chosen depending on the dimensionality of the tensors being forwarded by the

previous layer. Additionally pooling layers can either be global, average and/or max.

Global pooling layers down samples the network to one single value, which is the most

prominent feature. Average pooling layers downsample the network to the average

value. Max pooling layer on the other hand downsample a network to its maximum

values. (Chollet, 2017a)

In Keras the following parameters are available for global max pooling layers:

- pool_size: This defines the size of the max pooling windows.

- strides: This defines the factor, by which the networks should be downsampled

by.

- padding: If this is set to “valid”, it ensures both that the data does not shrink in

its dimensionality and that input data on the border of the input grid (for example

in a vectorized image representation) is not disadvantaged, because they get

looked at less thoroughly, because their position is part of less filter regions.

- data_format: This defines in which order the dimensions of a tensor are being

outputed. This is relevant if the input data is in the shape of a 3D tensor.

The output of a global max pooling layer is defined by the value given in the parameter

data_format. (Chollet & others, 2015)

2.2.3.5 Word Embedding Layers

A Word Embedding is a vector representation of words and their semantic similarity

(Mikolov et al., 2013). Word Embeddings have been shown to improve the

performance of NLP tasks in Deep Learning (Socher et al., 2013). There are two ways

in which an embedding can be implemented in a Deep Neural Network. The first one

is to use an embedding layer, which makes the model use an unstructured random

Deep learning for detecting integrity risks in text documents 25

Churer Schriften zur Informationswissenschaft – Schrift 103 Master Thesis Kalbermatter

vector that then will be adapted to the task. The embedding layer requires integer

encoded input data, so that each word in the input data is assigned to a unique

identifier. The quality of these embeddings depend strongly on the size of the training

set. If not enough data is available to train a Word Embedding adapted to the task, the

second possibility is to use a pre-trained Word Embedding. A Deep Learning model

usually starts with one of the above-mentioned embedding layers (Chollet, 2017a).

The embedding layer in Keras can be used as a layer in a network or as a stand-alone

module. If it is used as such, the Word Embedding can be saved for later use, without

having to rebuild it with each new network. The embedding layer in Keras also allows

to use pre-trained generalized Word Embeddings. The embedding layer also has

weights on its own and the output is a 2D vector, where each word is represented by

a unique integer. The embedding layer must specify the following three parameters:

- input_dim: This is the number of words contained in the embedding.

- output_dim: This is the size of the output vector.

- input_length: This is the size of the input data in words.

There are two popular methods of creating Word Embeddings from a text dataset. The

first one is called Word2Vec, the second one GloVe. Both of them are unsupervised

learning algorithms to extract vector representations of text data. (Pennington, Socher,

& Manning, 2014), (Mikolov et al., 2013)

In Keras it is possible to use GloVe as well as Word2Vec Word Embeddings. To use

Word2Vec the library Genism has to be used. While both algorithms compute the

models in a different way, the output model is only slightly different and can be

converted if the Deep Learning Frameworks does not support them. (Chollet & others,

2015)

2.2.4 Deep Learning Data Representations

There are different ways in which input data can be represented in Deep Neural

Networks, mostly depending on the kind of input data provided. The data structure in

Deep Learning is always a so called tensor, which is a container for numbers, that is

used as a representation of the input data in a Deep Neural Network. A vector is usually

defined by its number of axes, its shape and its data type. The following list shows the

different types of tensors according to their dimensionality: (Chollet, 2017a, Chapter

2.2)

Deep learning for detecting integrity risks in text documents 26

Churer Schriften zur Informationswissenschaft – Schrift 103 Master Thesis Kalbermatter

- Scalars: A scalar is a tensor that contains only one value, thus is zero-

dimensional.

- Vectors: A vector is a tensor which contains values on one axis, thus is a one-

dimensional tensor.

- Matrices: A matrice is a vector which contains two axes, thus is a two-

dimensional vector.

Additional axes can be added to create multi-dimensional tensors. The shape of a

tensor is defined by the size of each axis. The shape of a tensor is usually depicted by

round parenthesis, with the amount of numbers being the dimensionality and the size

of each axis being the numbers. For example the vector (3, 5) is two dimensional,

because there are two numbers within the parenthesis, thus the vector is a matrice.

The size of the two axes is 3 and 5 respectively. The data type is defined by the type

of data contained in a tensor. The most commonly used data types in Python are

float32, uint8 and float64. (Gluon Contributors, 2017, Chapter 1)

2.2.5 Deep Learning Frameworks

There is a multitude of different Deep Learning frameworks. The following chapters

give an overview over a selection of frameworks. Deep Learning frameworks come in

two main forms: low-level and high-level frameworks.

2.2.5.1 Low-Level Deep Learning Frameworks

Low-level Deep Learning Frameworks need a lot of coding experience and in-depth

understanding of the underlying mechanisms to be applicable. On the other hand, this

allows the developer to fine tune even small details, which makes them well suited for

research and for the development of new Deep Learning models from scratch.

The following table shows an overview over the most popular low-level Deep Learning

frameworks.

Framework Written in License

Tensorflow C++, Python Apache License 2.0

Torch C, Lua BSD License

Theano Python BSD License

MxNet C++ Apache License 2.0

Deeplearning4J Java Apache License 2.0

Deep learning for detecting integrity risks in text documents 27

Churer Schriften zur Informationswissenschaft – Schrift 103 Master Thesis Kalbermatter

Additional information about each framework can be found within the following

chapters.

2.2.5.1.1 Tensorflow

Tensorflow is a Machine Learning library which is being developed by the Google Brain

team and has been published under an Apache License 2.0. Tensorflow is being used

as the main AI library for many Google Services, such as Google Street View, Google

Translate, Gmail, Google Photos and Google Search and is being used as the backend

for many High-level Deep Learning frameworks. Tensorflow is written in Python, but

uses both Python and C++ in its implementation. Interfaces exist for Python, C, C++,

Java and Go (Martin Abadi et al., 2015; Tensorflow, 2019). In 2017 Keras has gained

official support of the Google Brain team as the first high-level Deep Learning

Framework, making it effectively Tensorflows main interface, although alternatives

exist (Chollet, 2017b).

2.2.5.1.2 Torch/Pytorch

Torch is a Machine Learning library which has been developed by Ronan Collobert,

Koray Kavukcuoglu and Clement Farabet and is being maintained by an active

community of developers. Torch gained popularity by being the main Machine Learning

library being used by Uber, Twitter and Facebook. Facebook’s Artificial Intelligence

research team developed Pytorch as an API for torch, to simplify its usage. Torch is

mainly implemented in C and can be used using C, C++ and Lua, while Pytorch can

be used with Python and is implemented in C++ and Python. Both Torch and Pytorch

have been published under a BSD License. The advantage of Pytorch is that a regular

debugger can be used. The library is well suited for fast prototyping. (Torch

Contributors, 2019)

2.2.5.1.3 Theano

Theano is a Python library for mathematical calculations with multi-dimensional arrays.

Theano is not inherently a Machine Learning library, but can be used for both Machine

Learning and Deep Learning. Theano sees itself as an improved version of the Python

library NumPy, which has been used as the foundation for its development. They

added further functions to the original numpy library, which also support the rapid

development and implementation of Machine Learning Algorithms. Theano has been

published under a BSD-License. (Theano Development Team, 2017)

Deep learning for detecting integrity risks in text documents 28

Churer Schriften zur Informationswissenschaft – Schrift 103 Master Thesis Kalbermatter

2.2.5.1.4 Apache MxNet

Apache MxNet is a scalable Deep Learning Framework that was developed by the

Apache Software Foundation and has been published under an Apache License 2.0.

MxNet supports a multitude of different programming language such as Python, C++,

Julia, Matlab and many more. The most prominent API is the Python interface Gluon.

(Apache Software Foundation, 2019a)

2.2.5.1.5 Deeplearning4J

Deeplearning4J, also known as DL4J and Eclipe Deeplearning4J, is short for Deep

Learning for Java. Because this library uses Java, it is often implemented as part of

Android applications. It has been published under an Apache License 2 and is being

developed by the company Skymind, a software firm based in San Francisco. (Eclipse

Deeplearning4J developement team, 2019)

2.2.5.2 High-Level Deep Learning Frameworks

High-level Deep Learning frameworks do not require advanced coding skills and allow

the developer to build Deep Learning Networks within a much shorter amount time

than low-level Deep Learning frameworks, which make them useful for quick

prototyping.

The following table offers a summer over all High-level Deep Learning frameworks

Framework Backend API Language License

Keras Tensorflow, Theano, CNTK Python MIT License

Gluon MXNet Python Apache License 2.0

Sonnet Tensorflow Python Apache License 2.0

Swift for Tensorflow Tensorflow Swift Apache License 2.0

PyTorch Torch Python BSD License

Additional information about each framework can be found within the following

chapters.

2.2.5.2.1 Keras

Keras is an Open Source Deep Learning framework in Python. Keras was originally

intended for researchers, enabling them to experiment and prototype with Deep

Learning with ease and in a user-friendly way. Keras is published under an MIT

License. Keras provides pre-defined building blocks based on low-level Deep-Learning

Deep learning for detecting integrity risks in text documents 29

Churer Schriften zur Informationswissenschaft – Schrift 103 Master Thesis Kalbermatter

frameworks such as Tensorflow. While Keras is part of Tensorflow as its main API, it

sees itself as an API for other low-level frameworks, such as Theano and CNTK. By

using this pre-defined building blocks, certain parameters such as the shape of input-

tensors in each layer, are being automatically adapted to the model used. (Chollet &

others, 2015)

2.2.5.2.2 Gluon

Gluon is an interface for the Apache MXNet framework, which can be manipulated

using Python. Gluon is an Open Source library, which is also published under an

Apache License 2.0, since it is part of the Apache MxNet project. Like most high-level

Deep Learning frameworks Gluon offers building blocks to easily build Neural

Networks, without needing technical knowledge, while still maintaining a high

performance. (Apache Software Foundation, 2019b)

2.2.5.2.3 Sonnet

Sonnet is an alternative interface for Tensorflow, which can be used with Python. The

main principle and main advantage behind Sonnet is that the representation of

modules is done in Python objects, instead of just being an interface. This helps if

modules need to be changed after construction, without changing their weights. Other

than that Sonnet offers, like most other high-level Deep Learning frameworks, an easily

understandable way to implement networks. (Reynolds et al., 2017)

2.2.5.2.4 Swift for Tensorflow

Swift for Tensorflow, also called S4TF, is another interface for Tensorflow, which can

be accessed by using the programming language Swift. This is developed by the

Google Brain team and the reasons for making this framework on top of Keras, is

because of the challenges that some Tensorflow developers identified while working

with Python. These challenges are performance, concurrency, deployment for mobile

as well as the fact that often Python prototypes have to be rewritten in the C++ API for

production, and the lack of possibility to write custom operations in Python. (Wei, 2018)

Deep learning for detecting integrity risks in text documents 30

Churer Schriften zur Informationswissenschaft – Schrift 103 Master Thesis Kalbermatter

3. Methodology

The methodology of this thesis consists of four steps:

1. Literature review: The literature review consists of the following steps:

a. Builiding a basic understanding of Deep Learning.

b. Identification of the state of the art in text classification with Deep

Learning and identification of relevant Deep Neural Network models.

c. Identification of configurations and architectures for the relevant Deep

Neural Network models.

d. Identification of common problems in the application of Deep Learning

and possible ways to circumvent or solve these problems.

The literature review was conducted using primarily the following sources:

- portal.acm.org: The ACM (Association for Computing Machinery) digital

library contains a comprehensive collection of publications focused on the

field of computing, including many important publications in the field of Deep

Learning.

- sciencedirect.com: Science Direct is the database for scientific

publications from the Elsevier publishing company. Science Direct contains

books and journals across many scientific fields.

- ieeexplore.ieee.org: IEEE Xplore is a research database for journal articles

in the following disciplines: Computer science, electrical engineering and

electronics.

2. Development: Development of relevant strategies and Deep Neural Network

models and configurations for text classification of integrity risks. Additional

configurations that are subject to tests are the amount of epochs (iterations

through all the training data), the size and quality of the training and testing

dataset and the type and size of the Word Embeddings.

3. Implementation: Implementation of relevant Deep Neural Network models and

configurations and testing of the implemented configurations to improve their

performance.

The implementation of the relevant Deep Neural Networks was done using the

following tools:

Deep learning for detecting integrity risks in text documents 31

Churer Schriften zur Informationswissenschaft – Schrift 103 Master Thesis Kalbermatter

- Python, Keras and Tensorflow: For the implementation of the networks,

Keras has been chosen as a high-level Deep Learning, with Tensorflow as

a low-level Deep Learning Framework backend. The reason for choosing

Tensorflow is because of the big community, which offers technical support

as well as many examples, which can be used as a template. Another reason

for using Tensorflow, is because its main API is Keras, which can be used

with Python. Python is a high level programming language that has been

used for both the preprocessing of the input data as well as for the

implementation of the Deep Neural Network models. Both Python and Keras

made the implementation of the models a comparatively easy task, because

its syntax is easy to understand and the building blocks which Keras provide

reduce the amount of micromanaging parameters greatly.

- Jupyter Notebook and Github: Jupyter Notebook is an interactive web-

application which allows to edit, run and order code in a clear and convenient

way. It also increases organization by storing outputs and results in the same

file as the code. Github has been used to make the final code available to

the public.

Additionally the following resources have been used as a basis for the

implementation:

- Keras team Github: The Keras team published examples of Deep Learning

implementations on their Github page (keras-team, 2019). These were used

as a template for most of the model implementations. Specifically the

examples using the imdb-dataset have been used, since it is also a binary

classification task.

- Kaggle: Kaggle is an online platform, where researchers and data scientists

can upload submissions for machine learning challenges, which are then

available to the public. Thus, this platform offers a wide variety of tested and

commented code samples, especially for Keras. (Kaggle Inc., 2019)

- Deep Learning with Python: The book “Deep Learning with Python” by

François Chollet has been used to get to know the basics of Deep Learning

and adapt and fine-tune the individual layers in the implementations.

(Chollet, 2017a)

Deep learning for detecting integrity risks in text documents 32

Churer Schriften zur Informationswissenschaft – Schrift 103 Master Thesis Kalbermatter

4. Evaluation: Comparison of the results for each architecture, followed by

analysis and discussion of the results. If results do not coincide with what the

literature suggests, additional tests will be conducted with different parameters

according to the steps mentioned above.

The above-described process is an iterative process. After the results have been

compared and analyzed, the process starts over again by implementing the lessons

learned in the prior implementation.

Figure 11: Vizualization of the research design as an iterative processs

3.1 Description Of The Task

The task is to classify news articles into the following two categories:

1. Integrity-risk news articles

2. Non-integrity-risk news articles

This is a binary classification problem, thus supervised learning will be used to solve

the task. The input data consists of text files, thus vectors, one-dimensional tensors,

will represent the data. This means that the layers either need to be able to take in

vector data or alternatively that the dimensionality of the data needs to change before

being processed by the layer, for example by adding a flatten layer. The answers

provided to the input data are labels of the two above mentioned categories.

Deep learning for detecting integrity risks in text documents 33

Churer Schriften zur Informationswissenschaft – Schrift 103 Master Thesis Kalbermatter

3.2 Description of the data & data preprocessing

The input data consists of german text files and the focus is on corruption based

integrity risks. It consists of two major datasets, one which was automatically extracted

and one that was manually checked. Both datasets have been put together by the

Integrity Risk Monitor project team. The following three datasets are a mix of these two

datasets and have been used for the benchmark:

Dataset 1: This dataset consists of a total of 1385 positive and 1385 negative samples.

These samples have been automatically extracted using keyword extraction, thus may

contain false-negatives or false-positives as well as unrelated documents. Since the

data has been collected by using keyword extraction, the difference between the

positive and negative datasets are more obvious and the keywords used for the

selection are obvious features, which the networks most likely train to detect.

Dataset 2: This dataset consists of a total of 503 positive and 721 negative samples.

These samples have been automatically extracted and then manually checked by the

project partners, to minimize wrongly classified documents in either of the pools as well

as to have a dataset with more similar pools, with ambiguous entries in both, thus

making them harder to classify.

Dataset 3: This dataset is a mix of the two other datasets, thus contains both

ambiguous samples in both the negative and positive dataset, as well as more obvious

samples of the first dataset. The composition of this dataset is as follows: 503 positive

and 721 negative samples manually picked and 1118 positive and 900 negative

samples picked through keyword extraction. There is a total of 1621 positive and 1621

negative samples in this dataset.

Before training the input data is cleaned by using the Python library Natural Language

Toolkit, also called NLTK. The aim of data cleaning is to remove noise and errors in

the input data. The following steps have been taken as part of the data preprocessing:

- Special characters such as punctuation characters were removed either by

just leaving them out or by inserting a space.

- Stopwords have been removed from the custom Word Embedding, because

only a pre-defined amount of words are being included in the custom

embedding and processed by the Neural Network, which might be

problematic if stopwords were included. The reason is because they might

Deep learning for detecting integrity risks in text documents 34

Churer Schriften zur Informationswissenschaft – Schrift 103 Master Thesis Kalbermatter

take up a significant amount of the Word Embedding, which are not relevant

to the output and could potentially lead to the detection of features, which do

not hold any significance. This has not been done for the pre-trained Word

Embedding, because stopwords, which are not contained in the pre-trained

Word Embedding, are not included and thus get cleaned out. The pre-trained

Word Embedding already contains many stopwords, but sets the value of

their weights to 0, if they get removed beforehand. To identify stopwords the

german NLTK corpus was being used.

3.3 Deep Neural Network Models

The result of the implementation are a mixture of the in chapter 4.2 mentioned Deep

Neural Network types and layer types. For this thesis, a supervised approach is

suitable, since the aim is to categorize a dataset into known and predefined categories.

In the following chapters the choice of Word Embeddings and Deep Neural Network

models and their layers will be discussed.

3.3.1 Word Embeddings

Two different Word Embedding types have been implemented. The first one is a

custom Word Embedding, build by using the input text data. This Word Embedding is

limited to the top 500 words, which remained after pre-processing the input data.

Although further tests with bigger custom Word Embeddings have been conducted, as

can be seen in chapter 6.4. The second type uses a pre-trained Word Embedding. The

implementation of both the pre-trained and the custom Word Embedding is based on

the Github examples of Keras, as well as on a variety of Kaggle entries.

The pre-trained Word Embedding is a German Word2Vec embedding, which has been

trained using the German version of Wikipedia as well as a dataset of German news

from the years 2007-2013 (Müller, 2019). This Word Embedding has been chosen,

because it was trained using the biggest and most up to date corpus of news articles

and it is important to have a Word Embedding, which was trained with a corpus similar

to the training corpus. The Word Embedding contains 60’000 words and has been

converted into text form and into the GloVe format.

3.3.2 Network Models

The following two CNN models are based on the models described in the literature

review as well as on the examples given by the Keras team. (keras-team, 2019)

Deep learning for detecting integrity risks in text documents 35

Churer Schriften zur Informationswissenschaft – Schrift 103 Master Thesis Kalbermatter

CNN: This network model is a standard CNN model as described by Lecun et. al. with

just one CNN layer. The CNN layer uses a ReLU activation function, as is the standard

for CNN layers in Neural Networks.

RCNN: This network model is based on the architecture proposed by Li & Wu using

an LSTM layer as the recurrent layer.

The following RNN models are based on the model architectures proposed by Graves

(Graves, 2012, Chapter 5.2) as well as on the example given by the Keras team (keras-

team, 2019).

LSTM: For this network, the standard LSTM layer of Keras will be implemented. The

LSTM layer is followed by a dense layer as an output layer.

Double LSTM: This network is identical to the regular LSTM model, but with an

additional LSTM layer. When stacking LSTM layers on top of each other the parameter

return_sequences needs to be set to the value “True”, because else the second LSTM

layer does not have a 3-dimensional input. (Chollet & others, 2015)

LSTM with dropout layer: The additional dropout layer could potentially allow the

network to train for longer, without running into an overfitting problem.

GRU: For this network, the standard GRU layer of Keras was implemented, followed

by a dense layer as an output layer.

Deep learning for detecting integrity risks in text documents 36

Churer Schriften zur Informationswissenschaft – Schrift 103 Master Thesis Kalbermatter

Double GRU: This network is identical to the regular GRU model, but with an additional

LSTM layer. The return sequences parameter needs to be set to true for the first GRU

layer, to ensure that the shape of the input for the second GRU layer is correct.

GRU with dropout layer: The added dropout layer is added to this model is to

counteract Overfitting and to see, if there is a difference in accuracy with this

countermeasure.

RNN/Bidirectional LSTM: This model is identical to the standard LSTM, but with the

LSTM being a bidirectional instead of a unidirectional layer.

RNN/Bidirectional LSTM + Dropout: This model is based on the unidirectional LSTM

and dropout model, with a bidirectional LSTM layer.

All of the output layers use a Sigmoid activation function, because the task is a binary

classification task. All the hidden layers use a ReLU activation function to counteract

Overfitting.

Deep learning for detecting integrity risks in text documents 37

Churer Schriften zur Informationswissenschaft – Schrift 103 Master Thesis Kalbermatter

4. Evaluation

The main problem with the network’s performance was the quality of the data and

Overfitting. Other potential problems arose because of the Word Embeddings and the

model architectures. The following chapters discuss the results of the trainings, the

conclusions and where additional research is necessary.

4.1 Training Results

The following chapters list the results for the two Word Embedding types described in

chapter 5.3.1 and the three datasets described in chapter 5.2. The first value is the

name of the model, as described in chapter 5.3.2, the second describes the achieved

accuracy score for the evaluation dataset and the third describes the amount of epochs

needed to achieve this score, before the output model experienced an obvious

overfitting problem or stopped improving. Because Overfitting and the halt of

improvement are relative values, which are not precisely defined in the literature, the

following values have been set as a measure to define these problems in this thesis:

- As a measure to define a network, which is not improving anymore, a change

of less than 0.1% over more than 2 epochs has been chosen.

- An obvious overfitting problem occurs if the training accuracy increases

twice as much compared to the training accuracy for more than 1 epoch.

If one of the above conditions is true, the value before the problem occurred is used

as an accuracy measure in the following table. The maximum amount of epochs the

networks were trained for is 10. The results of each specific epoch of each network

training can be found in the appendix.

Deep learning for detecting integrity risks in text documents 38

Churer Schriften zur Informationswissenschaft – Schrift 103 Master Thesis Kalbermatter

4.1.1 Test Results Custom Word Embeddings

Model Result/Test Accuracy Number of epochs

Dataset 1

CNN 0.9762 1

RCNN 0.9866 1

LSTM 0.9783 3

Double LSTM 0.9743 1

LSTM + Dropout 0.9815 10

GRU 0.9865 1

Double GRU 0.9826 2

GRU + Dropout 0.9871 5

LSTM bidirectional 0.9868 3

LSTM bidirectional + Dropout 0.9875 5

Dataset 2

CNN 0.7006 2

RCNN 0.6942 4

LSTM 0.6991 3

Double LSTM 0.7018 4

LSTM + Dropout 0.7004 2

GRU 0.7098 3

Double GRU 0.7029 1

GRU + Dropout 0.7058 6

LSTM bidirectional 0.7001 3

LSTM bidirectional + Dropout 0.6892 3

Dataset 3

CNN 0.7704 1

RCNN 0.7730 1

LSTM 0.7543 1

Double LSTM 0.7485 1

LSTM + Dropout 0.7718 6

GRU 0.7776 4

Double GRU 0.7795 7

GRU + Dropout 0.7778 7

LSTM bidirectional 0.7783 6

LSTM bidirectional + Dropout 0.7611 1

Deep learning for detecting integrity risks in text documents 39

Churer Schriften zur Informationswissenschaft – Schrift 103 Master Thesis Kalbermatter

4.1.2 Test Results Pre-Trained Word Embeddings

Model Result/Test Accuracy Number of epochs

Dataset 1

CNN 0.9260 1

RCNN 0.9567 1

LSTM 0.9386 10

Double LSTM 0.8736 1

LSTM + Dropout 0.9269 4

GRU 0.7735 1

Double GRU 0.9386 6

GRU + Dropout 0.9025 6

LSTM bidirectional 0.8060 1

LSTM bidirectional + Dropout 0.7924 1

Dataset 2

CNN 0.6906 7

RCNN 0.6516 3

LSTM 0.6783 3

Double LSTM 0.7111 3

LSTM + Dropout 0.6906 7

GRU 0.6414 3

Double GRU 0.6168 1

GRU + Dropout 0.6352 1

LSTM bidirectional 0.7234 10

LSTM bidirectional + Dropout 0.5779 1

Dataset 3

CNN 0.8114 1

RCNN 0.7899 1

LSTM 0.7778 7

Double LSTM 0.8079 10

LSTM + Dropout 0.8171 7

GRU 0.7793 2

Double GRU 0.8295 3

GRU + Dropout 0.9025 6

LSTM bidirectional 0.8171 10

LSTM bidirectional + Dropout 0.7215 5

Deep learning for detecting integrity risks in text documents 40

Churer Schriften zur Informationswissenschaft – Schrift 103 Master Thesis Kalbermatter

4.2 Evaluation Of Quality And Sze Of Datasets

The difference in size between the datasets is most probably the biggest influence on

the datasets difference in accuracy and also the reason, why dataset 1 is the highest

scoring dataset. The quality of dataset 1 is poor due to the way it was extracted.

Because all of dataset 1 and a part of dataset 3 have been automatically extracted by

using keyword extraction, it is most likely, that the networks identified the keywords

used for the extraction as features. The weights of these features are particularly high,

because this is a distinctive difference between the two datasets. The aim of the task,

is to differentiate between documents, even if certain keywords might be included both

in some negative and positive examples, as well as to be able to identify positive

documents, even if they do not include certain keywords. The output models for this

dataset are most likely not able to do this anymore.

On top of that, the content of some negative example is not news content, which

distorts the accuracy further, because the network might learn to differentiate between

news and not news documents, instead of integrity and not integrity risks. These

distortions are not visible in the accuracy of the test datasets, because they have the

same origin and thus have the same quality as the training dataset. This means that

the test’s accuracy score does not reflect reality, which is most likely the reason why

the test accuracy for dataset 1 is that high.

Dataset 2 on the other hand contains an accurate depiction of a potential news corpus

containing positive and negative integrity risk samples. Because the dataset has been

evaluated manually, the quality of the dataset is much higher and the samples are

harder to categorize, due to their selection not being based on certain keywords. In

addition, the quality of the negative dataset is much higher, because they were also

manually selected, thus negative samples are guaranteed to be news articles. Even

though dataset 2 is the dataset with the highest quality, the performance was lower.

This was to be expected because of its more ambiguous nature. Also the difference

between the different architectures was not significant.

The small size of dataset 2 is most likely the reason for its low accuracy, which could

lead to the following problems:

- Smaller datasets are more susceptible to Overfitting. The fact that for dataset

1 the differences were not significantly bigger and the average number of

Deep learning for detecting integrity risks in text documents 41

Churer Schriften zur Informationswissenschaft – Schrift 103 Master Thesis Kalbermatter

epochs before Overfitting (6.5 for Dataset 1 and 7 for Dataset 2) were not

significantly higher, does not support this theory.

- The size of the dataset does not allow to build a model which has the ability

to generalize. This is due to the fact that a dataset this small, cannot contain

all possible differences between positive and negative samples, especially

considering the fact, that 20% of the dataset is not used to train, because it

is kept aside for testing. In a big and diverse dataset, features which are not

descriptive for the task, but are prominent in a small number of files in the

specific dataset, will be eventually balanced out and thus cleaned out by

other examples, which do not have these features. In a small dataset these

features have a much bigger weight and not enough samples to balance

them out.

- The test accuracy is calculated only on a very small dataset of 20% and thus

might be distorted. For 500 positive examples, this is only 100 positive test

examples. If the test data is poorly chosen and contains all the samples with

a certain feature, which is not present in the training data, it is not possible

for the algorithm to learn these features, except by randomly doing so. On

the other hand, the training dataset might contain most samples with a

certain feature, which might make the output model too biased towards

certain features, which are not reflected in the test dataset.

The above-mentioned reasons were the reason why dataset 3 was created. Dataset 3

includes both a big amount of easily distinguishable positives and negatives of dataset

1, as well as the more ambiguous samples found in dataset 2. This offers both the

advantages of a big dataset, but also counters some of the disadvantages of the low

quality in dataset 1, by adding samples, which are harder to distinguish. While it is most

likely still too small to build a model, which can also identify samples from other sources

with a high accuracy, it might be big enough to simulate a real dataset and thus to

compare the different models with each other.

Deep learning for detecting integrity risks in text documents 42

Churer Schriften zur Informationswissenschaft – Schrift 103 Master Thesis Kalbermatter

The following table shows the average accuracy for each dataset:

 Custom Word Embedding Pre-Trained Word Embedding

Dataset 1 0.9827 0.8835

Dataset 2 0.7004 0.6617

Dataset 3 0.7692 0.8054

Average 0.8175 0.7835

4.3 Evaluation Of Overfitting And Regularization

The CNN and RCNN model started to experience an overfitting problem on average

after approximately 2 epochs. The RNN models reached their maximum accuracy

before experiencing Overfitting on average after approximately 4 epochs. The

evaluation method to identify the accuracy values mentioned in chapter 5.4 was

accurate for most of the results, with a few exceptions. For example did the CNN model

with dataset 1 grow further even though the difference between the training accuracy

and the test accuracy was significant, because the training accuracy started out lower

than usual. The following table shows the average amount of epochs a network went

through before experiencing Overfitting on average over all datasets and both Word

Embedding types.

Model

Epochs before Overfitting
on average / all datasets

Epochs before Overfitting
on average / dataset 3

CNN 2.2 1

RCNN 1.8 1

LSTM 4.5 4

Double LSTM 3.3 5.5

LSTM + Dropout 6 6.5

GRU 2.3 3

Double GRU 3.8 6.5

GRU + Dropout 5.2 6.5

LSTM bidirectional 5.5 8

LSTM bidirectional + Dropout 2.6 3

The deeper RNN networks have shown, that there is a significant difference compared

to the more shallow and less complex alternative models. The LSTM model showed a

decrease on average over all datasets, but an increase for dataset 3. The GRU model

increased both overall and for only for dataset 3, by 1.5 respectively 3.5 epochs.

Deep learning for detecting integrity risks in text documents 43

Churer Schriften zur Informationswissenschaft – Schrift 103 Master Thesis Kalbermatter

Already an Overfitting problem can be seen in these simple networks, thus it can be

assumed, that a more complex or deep network might make this problem worse.

The following regularization steps have been contemplated and applied if they were

applicable:

- Dropout Layers: Dropout layers did have a significant influence on the

amount of epochs, but this only prolonged training for a few more epochs,

before facing Overfitting again. The only exception to this were the

bidirectional networks, which scored lower with a dropout layer.

- Decrease of network size and complexity: The model architectures were

already as simple as possible, so the problem is most likely not the amount

of parameters.

- Size and quality of dataset: As mentioned in the preceding chapter, the

datasets were quite small, especially dataset 2. Since even after applying

dropout layers Overfitting was a problem, this is the most likely reason why

Overfitting occurred. This theory is also supported by the amount of epochs

until saturation, which on average were higher in the bigger datasets, except

for the CNN networks.

- Reinitializing weights: Since Overfitting could just be a product of an

unlucky set of starter weights, the networks that experienced the most

Overfitting, were reinitialized and computed again. The difference in

accuracy was not significant, although in some cases Overfitting set in at a

later stage. This is most likely because the initial set of weights gets adjusted

quickly and do not have a big influence on their accuracy.

4.4 Evaluation Of Word Embeddings

The difference in accuracy between the pre-trained and the custom Word Embedding

for dataset 1 and dataset 2 on the other hand is counterintuitive. With dataset 1 the

custom Word Embedding achieved considerably higher test accuracy than the pre-

trained Word Embedding. Although with dataset 2 the differences are less significant,

the pre-trained Word Embedding scored lower than the custom one as well. The

average score of each Word Embedding for each Dataset can be seen in the following

table.

Deep learning for detecting integrity risks in text documents 44

Churer Schriften zur Informationswissenschaft – Schrift 103 Master Thesis Kalbermatter

 Custom Word Embedding Pre-Trained Word Embedding

Dataset 1 0.9827 0.8835

Dataset 2 0.7004 0.6617

Dataset 3 0.7692 0.8054

Average 0.8175 0.7835

A pre-trained dictionary should be more efficient for smaller datasets, while a custom

Word Embedding should be more efficient for bigger datasets. This is because a

custom Word Embedding is adapted to a specific dataset, but it can only be specific

enough, if the dataset is large enough. A pre-trained Word Embedding on the other

hand, was trained without the specific task in mind and thus uses data which might not

be representative of the input dataset.

Reasons why the custom Word Embedding performed better in dataset 1 and 2 than

the pre-trained Word Embedding could be:

- The age of the Word Embedding: The Word Embedding was trained in

2015. Even though ethics and the definition of what an integrity risk is

changes over time, the articles focus on corruption, which is neither a new

field nor one that changed very much in the last five years. This could be

verified or falsified by training a new Word Embedding with up-to-date data,

although it would be hard to determine if the differences would be because

the data is more up-to-date or just because the data is different.

- The domain of the Word Embedding: The Word Embedding does not

apply to the task. This is also unlikely, since it was made using news articles

among other things. This could be verified by training a new Word

Embedding, using the source code provided by the creator, but without

including the Wikipedia dataset.

- Data preprocessing and size: The custom Word Embedding uses only the

top 500 words after data preprocessing, while the pre-trained Word

Embedding includes 60’000 words and thus has an input layer of 60’000

neurons. The weight of all the words, which are not part of the input dataset,

is set to 0. They are thus ignored, which reduces the size of the network.

This and because the Word Embedding itself already serves as a filter, by

leaving out words, which are not present in the Word Embedding, is the

Deep learning for detecting integrity risks in text documents 45

Churer Schriften zur Informationswissenschaft – Schrift 103 Master Thesis Kalbermatter

reason, why stop word elimination was not done for the pre-trained Word

Embedding models. While this is positive, because it ensures, that only

words which are part of the Word Embedding end up in the network, thus

the network does not train with wrongly spelled words or unimportant names

and abbreviations, it also makes the network consider words, which are not

as descriptive and less unique such as stop words. This might make the

network find features, which are not descriptive for the specific label, but

descriptive for the specific dataset and/or author, source or any other

characteristic which are not relevant for the detection of integrity risks. This

might also be a reason, why dataset 1 has such a high accuracy with a

custom Word Embedding. Because the custom Word Embedding only

includes the top 500 words, it is most likely, that some of these words are

the keywords used to extract the dataset, which are very distinctive features,

because they are only included in the positive dataset.

To test this theory tests with a CNN network and a bigger custom Word Embedding

have been conducted, which yielded the following results:

Size of Word

Embedding

Result/Test Accuracy with

stopword reduction

Result/Test Accuracy without

stopword reduction

500 0.7743 0.7701

1000 0.7761 0.7836

1500 0.7887 0.7852

2000 0.7929 0.7829

2500 0.7853 0.7896

3000 0.7885 0.7831

3500 0.7919 0.7891

4000 0.7944 0.7963

Networks with stopword reduction did not make up for a bigger difference than 1% and

in no clear direction, thus did not have a significant impact on the accuracy. The results

show a small increase in accuracy in bigger Word Embeddings. The detailed results

can be found in the appendix in Chapter 9.1.3.1.

Deep learning for detecting integrity risks in text documents 46

Churer Schriften zur Informationswissenschaft – Schrift 103 Master Thesis Kalbermatter

4.5 Evaluation Of Model Architecture

The following table shows the average score of each model over all datasets and

dataset 3 specifically and both Word Embeddings:

Model
Average accuracy / all

datasets

Average accuracy / dataset

3

CNN 0.8125 0.7909

RCNN 0.8086 0.7814

LSTM 0.8044 0.7660

Double LSTM 0.8028 0.7782

LSTM + Dropout 0.8147 0.7944

GRU 0.7780 0.7784

Double GRU 0.8083 0.8045

GRU + Dropout 0.8184 0.8401

LSTM bidirectional 0.8019 0.7977

LSTM bidirectional + Dropout 0.7549 0.7413

The differences between LSTM and GRU networks were bigger than expected, even

though they should achieve similar results according to the literature, with the main

difference being their efficiency.

The difference of efficiency turned out to be as expected: GRU was much more efficient

than LSTM. It managed to calculate twice the amount of epochs compared to LSTM in

all of its occurrences. The millisecond per step value cannot always be compared

though, because it depends on circumstances at the time, such as the available

computing power, which is distorted by the amount of networks running, as well as

other tasks done by the machine at the same time.

There was no significant improvement by stacking two LSTM layers on top of each

other, compared to the more shallow and less complex variant with only one LSTM

layer. For GRU there was a significant difference between the stacked and non-

stacked version, with a difference of approximately 2%. Because the literature

suggests that they should have similar scores and the result could be due to an unlucky

draft of initial weights, all 4 networks have been computed again 2 times with dataset

3 to get an average score after 4 epochs, as is the average time for an RNN to have

an Overfitting problem. For the custom Word Embedding a size of 2000 has been

Deep learning for detecting integrity risks in text documents 47

Churer Schriften zur Informationswissenschaft – Schrift 103 Master Thesis Kalbermatter

chosen, to reflect the findings of Chapter 6.4. The results can be seen in the following

table:

 Accuracy custom Word

Embedding

Accuracy pre-trained

Word Embedding

GRU

First training 0.7788 0.8017

Second training 0.7835 0.7971

Average Score 0.7812 0.7994

Double

GRU

First training 0.7899 0.7894

Second training 0.7889 0.7840

Average Score 0.7894 0.7867

LSTM

First training 0.7819 0.7662

Second training 0.7908 0.7986

Average Score 0.7864 0.7824

Double

LSTM

First training 0.7883 0.7623

Second training 0.7913 0.8380

Average Score 0.7898 0.8002

The results show that the difference between the shallow and the deep networks are

less than 0.5% on average and not in favor of any of the two configurations and thus

not significant. With the bigger custom Word Embedding layer the differences between

the two types of Word Embeddings were reduced to approximately 2,2%.

The models which included dropout layers scored higher generally, except for the

LSTM bidirectional networks. The difference in RNN models was 2.5% higher, while

for the LSTM bidirectional model it was approximately 5% lower. The higher score is

because Overfitting was bypassed for a longer time in the models with output layers,

which enabled them to train for more epochs as well as to train to detect features,

which were less prominent.

The CNN-based networks scored higher than most RNN networks, except the ones

with dropout layers, with the exception of the bidirectional model. This is also likely due

to the inclusion of the two dropout layers.

The following table shows the average result after 4 trainings of the 4 highest scoring

models, CNN, LSTM with a dropout layer, LSTM bidirectional and GRU with a dropout

layer. Since pre-trained Word Embeddings scored slightly higher, even in the trainings

Deep learning for detecting integrity risks in text documents 48

Churer Schriften zur Informationswissenschaft – Schrift 103 Master Thesis Kalbermatter

with a bigger custom Word Embedding, these implementations were done with a pre-

trained Word Embedding. The amount of epochs has been set to the average amount

of epochs the respective network managed to train for before facing an overfitting

problem as described in Chapter 6.3.

Model Attempt Accuracy

CNN

First training 0.8588

Second training 0.8457

Third training 0.8688

Fourth training 0.8380

Average Score 0.8528

LSTM + Dropout

First training 0.7847

Second training 0.8241

Third training 0.8256

Fourth training 0.8272

Average Score 0.8154

GRU + Dropout

First training 0.7878

Second training 0.7971

Third training 0.8009

Fourth training 0.8002

Average Score 0.7965

LSTM bidirectional

First training 0.7878

Second training 0.7569

Third training 0.7878

Fourth training 0.8272

Average Score 0.7899

The highest scoring model is the CNN model with a difference in accuracy of more

than 4% and an average accuracy of 85%. To confirm if CNN networks work best for

integrity risk detection in general or just for this dataset, additional tests with bigger

datasets containing samples with higher quality have to be undertaken.

Deep learning for detecting integrity risks in text documents 49

Churer Schriften zur Informationswissenschaft – Schrift 103 Master Thesis Kalbermatter

5 Conclusion

To detect integrity risks in news documents is a binary classification task, thus needs

a supervised Deep Learning approach. This means that input data with answers to the

task needs to be provided. In this case the answers come in form of two labels, integrity

risk news articles and not integrity risk news articles. The literature review concluded,

that CNN and RNN networks work best for NLP tasks. For the experiments various

types of networks based on both CNN and RNN were implemented and evaluated.

The conclusion of the experiments are the following:

- Pre-trained Word Embedding work slightly better for this task with this

particular dataset than custom Word Embeddings. The reason for this might

be the size of the input data. With a bigger input dataset, a custom Word

Embedding should be considered. Bigger custom Word Embeddings had a

higher accuracy than smaller ones.

- Dropout layers help to counteract Overfitting, thus allow networks to run for

more epochs. This has been shown to lead to better results overall.

- Data quality and size are two of the most important factors to get good

results. The bigger the dataset, the more the network can generalize. The

better the quality of the dataset, the better it depicts non-simulated data and

the less likely the network identifies features, which are non-descriptive of

integrity risks.

- In the initial experiments, the CNN models and the LSTM and GRU models

with dropout layers, as well as the bidirectional LSTM yielded the best

results. Additional tests revealed that the CNN model yields the best results

of them with the quality and size of the current dataset.

Deep Learning is a viable option to detect integrity risks in news articles. Both CNN

and RNN (LSTM and GRU) as well as Bidirectional RNN networks should be evaluated

for an integrity risk classification solution. It is important to build a dataset with high

quality, which is big enough to be able to use Deep Learning for this task. To see if

Deep Learning performs better than conventional methods for this task additional

research is required.

Deep learning for detecting integrity risks in text documents 50

Churer Schriften zur Informationswissenschaft – Schrift 103 Master Thesis Kalbermatter

6. Literature

Abdel-Hamid, O., Mohamed, A. R., Jiang, H., Deng, L., Penn, G., & Yu, D. (2014).
Convolutional neural networks for speech recognition. IEEE Transactions on
Audio, Speech and Language Processing, 22(10), 1533–1545.
https://doi.org/10.1109/TASLP.2014.2339736

Apache Software Foundation. (2019a). Apache MXNet. Retrieved from
https://mxnet.incubator.apache.org/versions/master/index.html

Apache Software Foundation. (2019b). Gluon Package. Retrieved July 25, 2019,
from https://mxnet.incubator.apache.org/api/python/gluon/gluon.html

Bengio, Y., Ducharme, R., Vincent, P., & Janvin, C. (2003). A neural probabilistic
language model. Journal of Machine Learning Research, 3, 1137–1155.

Bengio, Y., Simard, P., & Frasconi, P. (1994). Learning long-term dependencies with
gradient descent is difficult. IEEE Transactions on Neural Networks, 5(2), 157–
166. https://doi.org/10.1109/72.279181

Carbonell, J. G., Michalski, R. S., & Mitchell, T. M. (1983). Machine Learning: A
Historical and Methodological Analysis. AI Magazine, 4(3), 69–79. Retrieved
from https://www.aaai.org/ojs/index.php/aimagazine/article/view/406

Cho, K., van Merrienboer, B., Gulcehre, C., Bahdanau, D., Bougares, F., Schwenk,
H., & Bengio, Y. (2014). Learning Phrase Representations using RNN Encoder-
Decoder for Statistical Machine Translation. Retrieved from
http://arxiv.org/abs/1406.1078

Chollet, F. (2017a). Deep Learning with Python (1st ed.). Greenwich, CT, USA:
Manning Publications Co.

Chollet, F. (2017b). we will be integrating Keras (TensorFlow-only version) into
TensorFlow. Retrieved July 2, 2019, from Twitter website:
https://twitter.com/fchollet/status/820746845068505088

Chollet, F., & others. (2015). Keras Documentation. Retrieved May 30, 2019, from
https://keras.io

Chung, J., Gulcehre, C., Cho, K., & Bengio, Y. (2014). Empirical Evaluation of Gated
Recurrent Neural Networks on Sequence Modeling.

Collobert, R., Weston, J., Bottou, L., Karlen, M., Kavukcuoglu, K., & Kuksa, P.
(2011). Natural Language Processing (Almost) from Scratch. Journal of Machine
Learning Research, 12, 2493–2537. https://doi.org/10.1109/CIC.2017.00050

Donahue, J., Hendricks, L. A., Rohrbach, M., Venugopalan, S., Guadarrama, S.,
Saenko, K., & Darrell, T. (2017). Long-Term Recurrent Convolutional Networks
for Visual Recognition and Description. IEEE Transactions on Pattern Analysis
and Machine Intelligence, 39(4), 677–691.
https://doi.org/10.1109/TPAMI.2016.2599174

Eclipse Deeplearning4J developement team. (2019). Deeplearning4j Guide.
Retrieved from https://deeplearning4j.org/docs/latest/

Fukushima, K. (1988). Neocognitron: A Hierarchical Neural Network Capable of
Visual Pattern Recognition. Neural Networks, 1(2), 119–130.

http://www.aaai.org/ojs/index.php/aimagazine/article/view/406
http://www.aaai.org/ojs/index.php/aimagazine/article/view/406
http://arxiv.org/abs/1406.1078

Deep learning for detecting integrity risks in text documents 51

Churer Schriften zur Informationswissenschaft – Schrift 103 Master Thesis Kalbermatter

https://doi.org/https://doi.org/10.1016/0893-6080(88)90014-7

Glorot, X., & Bengio, Y. (2010). Understanding the difficulty of training deep
feedforward neural networks. In Journal of Machine Learning Research -
Proceedings Track (Vol. 9).

Glorot, X., Bordes, A., & Bengio, Y. (2011). Deep Sparse Rectifier Neural Networks.
In G. Gordon, D. Dunson, & M. Dudík (Eds.), Proceedings of the Fourteenth
International Conference on Artificial Intelligence and Statistics (pp. 315–323).
Retrieved from http://proceedings.mlr.press/v15/glorot11a.html

Gluon Contributors. (2017). Gluon - The Straight Dope 0.1. Retrieved from
https://gluon.mxnet.io

Graves, A. (2012). Supervised Sequence Labelling with Recurrent Neural Networks.
https://doi.org/10.1007/978-3-642-24797-2

Hawkins, D. M. (2004). The Problem of Overfitting. Journal of Chemical Information
and Computer Sciences, 44(1), 1–12. https://doi.org/10.1021/ci0342472

Hochreiter, S., & Schmidhuber, J. (1997). Long Short-Term Memory. Neural
Comput., 9(8), 1735–1780. https://doi.org/10.1162/neco.1997.9.8.1735

Kaggle Inc. (2019). Kaggle. Retrieved from https://www.kaggle.com/

keras-team. (2019). Keras examples. Retrieved May 30, 2019, from
https://github.com/keras-team/keras/tree/master/examples

Krizhevsky, A., Sutskever, I., & Hinton, G. E. (2012). ImageNet Classification with
Deep Convolutional Neural Networks. In Advances in Neural Information
Processing Systems 25. https://doi.org/10.1201/9781420010749

Lai, S., Xu, L., Liu, K., & Zhao, J. (2015). Recurrent Convolutional Neural Networks
for Text Classification. Proceedings of the Twenty-Ninth AAAI Conference on
Artificial Intelligence, 2267–2273. Retrieved from
http://dl.acm.org/citation.cfm?id=2886521.2886636

Lecun, Y., Bottou, L., Bengio, Y., & Haffner, P. (1998). Gradient-based learning
applied to document recognition. Proceedings of the IEEE, 86(11), 2278–2324.
https://doi.org/10.1109/5.726791

Li, X., & Wu, X. (2015). Long short-term memory based convolutional recurrent
neural networks for large vocabulary speech recognition. Proceedings of the
Annual Conference of the International Speech Communication Association,
INTERSPEECH, 2015–Janua, 3219–3223.

Martin Abadi, Ashish Agarwal, Paul Barham, Eugene Brevdo, Zhifeng Chen,
Craig~Citro, … Xiaoqiang Zheng. (2015). TensorFlow: Large-Scale Machine
Learning on Heterogeneous Systems. Retrieved from
https://www.tensorflow.org/

McCulloch, W. S., & Pitts, W. (1988). A logical calculus of the ideas immanent in
nervous activity. In J. A. Anderson & E. Rosenfeld (Eds.), Neurocomputing:
Foundations of Research (pp. 15–27). Retrieved from
http://dl.acm.org/citation.cfm?id=65669.104377

http://proceedings.mlr.press/v15/glorot11a.html
http://www.kaggle.com/
http://dl.acm.org/citation.cfm?id=2886521.2886636
http://www.tensorflow.org/
http://www.tensorflow.org/
http://dl.acm.org/citation.cfm?id=65669.104377

Deep learning for detecting integrity risks in text documents 52

Churer Schriften zur Informationswissenschaft – Schrift 103 Master Thesis Kalbermatter

Mikolov, T., Chen, K., Corrado, G., & Dean, J. (2013). Distributed Representations of
Words and Phrases and their Compositionality. Advances in Neural Information
Processing Systems, (26), 3111–3119.

Ming Liang, & Xiaolin Hu. (2015). Recurrent convolutional neural network for object
recognition. 2015 IEEE Conference on Computer Vision and Pattern Recognition
(CVPR), 3367–3375. https://doi.org/10.1109/CVPR.2015.7298958

Molina, A. D. (2018). A Systems Approach to Managing Organizational Integrity
Risks: Lessons From the 2014 Veterans Affairs Waitlist Scandal. The American
Review of Public Administration, 48(8), 872–885.
https://doi.org/10.1177/0275074018755006

Müller, A. (2019). German word embeddings. Retrieved July 24, 2019, from
https://devmount.github.io/GermanWordEmbeddings/

Ng, A. Y. (2018). Machine Learning Yearning: Technical Strategy for AI Engineers, in
the Era of Deep Learning. Deeplearning.Ai. Retrieved from
https://www.deeplearning.ai/content/uploads/2018/09/Ng-MLY01-12.pdf

Nwankpa, C., Ijomah, W., Gachagan, A., & Marshall, S. (2018). Activation Functions:
Comparison of trends in Practice and Research for Deep Learning. 1–20.
Retrieved from http://arxiv.org/abs/1811.03378

Park, S., & Kwak, N. (2017). Analysis on the Dropout Effect in Convolutional Neural
Networks. In S.-H. Lai, V. Lepetit, K. Nishino, & Y. Sato (Eds.), Computer Vision
-- ACCV 2016 (pp. 189–204). Cham: Springer International Publishing.

Pennington, J., Socher, R., & Manning, C. D. (2014). GloVe: Global Vectors for Word
Representation. Empirical Methods in Natural Language Processing (EMNLP),
1532–1543. Retrieved from http://www.aclweb.org/anthology/D14-1162

Pouyanfar, S., Sadiq, S., Yan, Y., Tian, H., Tao, Y., Reyes, M. P., … Iyengar, S. S.
(2018). A Survey on Deep Learning. ACM Computing Surveys, 51(5), 1–36.
https://doi.org/10.1145/3234150

Reynolds, M., Barth-Maron, G., Besse, F., de Las Casas, D., Fidjeland, A., Green, T.,
… Viola, F. (2017). Open sourcing Sonnet - a new library for constructing neural
networks.

Schmidhuber, J. (2015). Deep Learning in neural networks: An overview. Neural
Networks, 61, 85–117. https://doi.org/10.1016/j.neunet.2014.09.003

Schuster, M., & Paliwal, K. K. (1997). Bidirectional Recurrent Neural Networks.
Trans. Sig. Proc., 45(11), 2673–2681. https://doi.org/10.1109/78.650093

Socher, R., Lin, C. C., Ng, A. Y., & Manning, C. D. (2011). Parsing Natural Scenes
and Natural Language with Recursive Neural Networks Richard. Proceedings of
the 28th International Conference on Machine Learning (ICML-11), 11, 129–136.
https://doi.org/10.1007/978-3-540-87479-9

Socher, R., Perelygin, A., Y.Wu, J., Chuang, J., Manning, C. D., Ng, A. Y., & Potts,
C. (2013). Recursive Deep Models for Semantic Compositionality Over a
Sentiment Treebank. PLoS ONE, 8(9), 1631–1642.
https://doi.org/10.1371/journal.pone.0073791

http://www.deeplearning.ai/content/uploads/2018/09/Ng-MLY01-12.pdf
http://www.deeplearning.ai/content/uploads/2018/09/Ng-MLY01-12.pdf
http://www.deeplearning.ai/content/uploads/2018/09/Ng-MLY01-12.pdf
http://www.deeplearning.ai/content/uploads/2018/09/Ng-MLY01-12.pdf
http://www.deeplearning.ai/content/uploads/2018/09/Ng-MLY01-12.pdf
http://arxiv.org/abs/1811.03378
http://www.aclweb.org/anthology/D14-1162

Deep learning for detecting integrity risks in text documents 53

Churer Schriften zur Informationswissenschaft – Schrift 103 Master Thesis Kalbermatter

Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, I., & Salakhutdinov, R. (2014).
Dropout: A Simple Way to Prevent Neural Networks from Overfitting. In Journal
of Machine Learning Research (Vol. 15).

Tensorflow. (2019). Tensorflow Github. Retrieved July 2, 2019, from Github website:
https://github.com/tensorflow/tensorflow

Theano Development Team. (2017). Theano 1.0 release. Retrieved July 25, 2019,
from http://deeplearning.net/software/theano/

Torch Contributors. (2019). PyTorch Documentation. Retrieved from pytorch.org
website: https://pytorch.org/docs/stable/index.html

Wei, R. (2018). Why Swift for TensorFlow? Retrieved July 25, 2019, from
https://github.com/tensorflow/swift/blob/master/docs/WhySwiftForTensorFlow.md

Zaremba, W., Sutskever, I., & Vinyals, O. (2014). Recurrent Neural Network
Regularization. Retrieved from https://arxiv.org/abs/1409.2329

http://deeplearning.net/software/theano/

Deep learning for detecting integrity risks in text documents 54

Churer Schriften zur Informationswissenschaft – Schrift 103 Master Thesis Kalbermatter

Appendix

The following chapters contain the detailed training results for each epoch of each training

divided into the two Word Embedding types and the three different datasets. An example for

each model implementation and each Word Embedding can be found in the following GitHub

repository: https://github.com/ukalb/IntegrityRiskDL

Appendix A Training Results for Custom Word Embedding Models

CNN

Dataset 1:
Train on 41960 samples, validate on 10490 samples
Epoch 1/4 - 41960/41960 - 292s 7ms/step - loss: 0.0795 - acc: 0.9772 - val_loss:
0.0667 - val_acc: 0.9762
Epoch 2/4 - 41960/41960 - 283s 7ms/step - loss: 0.0443 - acc: 0.9826 - val_loss:
0.0578 - val_acc: 0.9773
Epoch 3/4 - 41960/41960 - 302s 7ms/step - loss: 0.0386 - acc: 0.9839 - val_loss:
0.0633 - val_acc: 0.9772
Epoch 4/4 - 41960/41960 - 293s 7ms/step - loss: 0.0352 - acc: 0.9854 - val_loss:
0.0612 - val_acc: 0.9787
10490/10490 - 18s 2ms/step
Test score: 0.06115965358628843
Test accuracy: 0.978741658722593

Dataset 2:
Train on 21040 samples, validate on 5261 samples
Epoch 1/4 - 21040/21040 - 54s 3ms/step - loss: 0.6120 - acc: 0.6900 - val_loss:
0.6085 - val_acc: 0.6932
Epoch 2/4 - 21040/21040 - 59s 3ms/step - loss: 0.5919 - acc: 0.7048 - val_loss:
0.5926 - val_acc: 0.7006
Epoch 3/4 - 21040/21040 - 58s 3ms/step - loss: 0.5834 - acc: 0.7095 - val_loss:
0.5988 - val_acc: 0.6974
Epoch 4/4 - 21040/21040 - 85s 4ms/step - loss: 0.5752 - acc: 0.7138 - val_loss:
0.6056 - val_acc: 0.6892
5261/5261 - 5s 912us/step
Test score: 0.6055545946691137
Test accuracy: 0.6892225812923045

Dataset 3:
Train on 58620 samples, validate on 14655 samples
Epoch 1/4 - 58620/58620 - 174s 3ms/step - loss: 0.5208 - acc: 0.7648 - val_loss:
0.5139 - val_acc: 0.7704
Epoch 2/4 - 58620/58620 - 134s 2ms/step - loss: 0.5004 - acc: 0.7766 - val_loss:
0.5061 - val_acc: 0.7716
Epoch 3/4 - 58620/58620 - 109s 2ms/step - loss: 0.4943 - acc: 0.7798 - val_loss:
0.5044 - val_acc: 0.7744
Epoch 4/4 - 58620/58620 - 89s 2ms/step - loss: 0.4882 - acc: 0.7833 - val_loss:
0.5048 - val_acc: 0.7733
14655/14655 - 5s 354us/step
Test score: 0.5047620832208316
Test accuracy: 0.7732514500292605

https://github.com/ukalb/IntegrityRiskDL

Deep learning for detecting integrity risks in text documents 55

Churer Schriften zur Informationswissenschaft – Schrift 103 Master Thesis Kalbermatter

RCNN

Dataset 1:
Train on 41960 samples, validate on 10490 samples
Epoch 1/4
41960/41960 - 206s 5ms/step - loss: 0.0742 - acc: 0.9790 - val_loss: 0.0395 -
val_acc: 0.9866
Epoch 2/4
41960/41960 - 203s 5ms/step - loss: 0.0352 - acc: 0.9882 - val_loss: 0.0371 -
val_acc: 0.9855
Epoch 3/4
41960/41960 - 202s 5ms/step - loss: 0.0303 - acc: 0.9892 - val_loss: 0.0396 -
val_acc: 0.9849
Epoch 4/4
41960/41960 - 203s 5ms/step - loss: 0.0280 - acc: 0.9893 - val_loss: 0.0409 -
val_acc: 0.9848
10490/10490 - 8s 769us/step
Test score: 0.04094634840684522
Test accuracy: 0.9848426991809085

Dataset 2:
Train on 21040 samples, validate on 5261 samples
Epoch 1/4 - 21040/21040 - 50s 2ms/step - loss: 0.6134 - acc: 0.6917 - val_loss:
0.6106 - val_acc: 0.6917
Epoch 2/4 - 21040/21040 - 50s 2ms/step - loss: 0.5917 - acc: 0.7051 - val_loss:
0.5925 - val_acc: 0.7023
Epoch 3/4 - 21040/21040 - 51s 2ms/step - loss: 0.5823 - acc: 0.7120 - val_loss:
0.5952 - val_acc: 0.7023
Epoch 4/4 - 21040/21040 - 50s 2ms/step - loss: 0.5719 - acc: 0.7172 - val_loss:
0.5978 - val_acc: 0.6942
5261/5261 - 2s 351us/step
Test score: 0.5978319810225786
Test accuracy: 0.6941646097209875

Dataset 3:
Train on 58620 samples, validate on 14655 samples
Epoch 1/4 - 58620/58620 - 142s 2ms/step - loss: 0.5194 - acc: 0.7663 - val_loss:
0.5019 - val_acc: 0.7730
Epoch 2/4 - 58620/58620 - 117s 2ms/step - loss: 0.4931 - acc: 0.7804 - val_loss:
0.5006 - val_acc: 0.7758
Epoch 3/4 - 58620/58620 - 197s 3ms/step - loss: 0.4841 - acc: 0.7859 - val_loss:
0.4976 - val_acc: 0.7781
Epoch 4/4 - 58620/58620 - 231s 4ms/step - loss: 0.4777 - acc: 0.7902 - val_loss:
0.4990 - val_acc: 0.7762
14655/14655 - 9s 586us/step
Test score: 0.4989652040975975
Test accuracy: 0.7761856010650783

LSTM

Dataset 1:
Train on 41960 samples, validate on 10490 samples

Deep learning for detecting integrity risks in text documents 56

Churer Schriften zur Informationswissenschaft – Schrift 103 Master Thesis Kalbermatter

Epoch 1/10 - 41960/41960 - 681s 16ms/step - loss: 0.1301 - acc: 0.9724 - val_loss:
0.1224 - val_acc: 0.9724
Epoch 2/10 - 41960/41960 - 681s 16ms/step - loss: 0.1026 - acc: 0.9735 - val_loss:
0.0962 - val_acc: 0.9724
Epoch 3/10 - 41960/41960 - 678s 16ms/step - loss: 0.0729 - acc: 0.9774 - val_loss:
0.0653 - val_acc: 0.9783
Epoch 4/10 - 41960/41960 - 681s 16ms/step - loss: 0.1009 - acc: 0.9754 - val_loss:
0.0647 - val_acc: 0.9765
Epoch 5/10 - 41960/41960 - 849s 20ms/step - loss: 0.1049 - acc: 0.9734 - val_loss:
0.1111 - val_acc: 0.9725
Epoch 6/10 - 41960/41960 - 892s 21ms/step - loss: 0.0836 - acc: 0.9742 - val_loss:
0.0757 - val_acc: 0.9742
Epoch 7/10 - 41960/41960 - 1000s 24ms/step - loss: 0.0566 - acc: 0.9788 - val_loss:
0.0557 - val_acc: 0.9802
Epoch 8/10 - 41960/41960 - 1044s 25ms/step - loss: 0.0395 - acc: 0.9857 - val_loss:
0.0531 - val_acc: 0.9838
Epoch 9/10 - 41960/41960 - 994s 24ms/step - loss: 0.0354 - acc: 0.9872 - val_loss:
0.0489 - val_acc: 0.9837
Epoch 10/10 - 41960/41960 - 1215s 29ms/step - loss: 0.0328 - acc: 0.9885 -
val_loss: 0.0640 - val_acc: 0.9821

Dataset 2:
Train on 21040 samples, validate on 5261 samples
Epoch 1/8 - 21040/21040 - 126s 6ms/step - loss: 0.6246 - acc: 0.6819 - val_loss:
0.6201 - val_acc: 0.6805
Epoch 2/8 - 21040/21040 - 195s 9ms/step - loss: 0.6069 - acc: 0.6949 - val_loss:
0.6068 - val_acc: 0.6919
Epoch 3/8 - 21040/21040 - 268s 13ms/step - loss: 0.5934 - acc: 0.7068 - val_loss:
0.6022 - val_acc: 0.6991
Epoch 4/8 - 21040/21040 - 270s 13ms/step - loss: 0.5897 - acc: 0.7109 - val_loss:
0.6029 - val_acc: 0.6982
Epoch 5/8 - 21040/21040 - 269s 13ms/step - loss: 0.5863 - acc: 0.7115 - val_loss:
0.6041 - val_acc: 0.6980
Epoch 6/8 - 21040/21040 - 269s 13ms/step - loss: 0.5844 - acc: 0.7134 - val_loss:
0.6051 - val_acc: 0.6953
Epoch 7/8 - 21040/21040 - 269s 13ms/step - loss: 0.5821 - acc: 0.7145 - val_loss:
0.6125 - val_acc: 0.6995
Epoch 8/8 - 21040/21040 - 270s 13ms/step - loss: 0.5773 - acc: 0.7173 - val_loss:
0.6134 - val_acc: 0.6974

Dataset 3:

Train on 58620 samples, validate on 14655 samples
Epoch 1/10 - 58620/58620 - 1052s 18ms/step - loss: 0.5460 - acc: 0.7498 - val_loss:
0.5270 - val_acc: 0.7543
Epoch 2/10 - 58620/58620 - 570s 10ms/step - loss: 0.5160 - acc: 0.7665 - val_loss:
0.5363 - val_acc: 0.7608
Epoch 3/10 - 58620/58620 - 571s 10ms/step - loss: 0.5134 - acc: 0.7624 - val_loss:
0.5214 - val_acc: 0.7487
Epoch 4/10 - 58620/58620 - 571s 10ms/step - loss: 0.5092 - acc: 0.7666 - val_loss:
0.5086 - val_acc: 0.7681

Deep learning for detecting integrity risks in text documents 57

0.6049 - val_acc: 0.6999

Churer Schriften zur Informationswissenschaft – Schrift 103 Master Thesis Kalbermatter

Epoch 5/10 - 58620/58620 - 571s 10ms/step - loss: 0.4980 - acc: 0.7775 - val_loss:
0.5107 - val_acc: 0.7684
Epoch 6/10 - 58620/58620 - 568s 10ms/step - loss: 0.4990 - acc: 0.7733 - val_loss:
0.5136 - val_acc: 0.7597
Epoch 7/10 - 58620/58620 - 570s 10ms/step - loss: 0.5018 - acc: 0.7704 - val_loss:
0.5373 - val_acc: 0.7415
Epoch 8/10 - 58620/58620 - 568s 10ms/step - loss: 0.4987 - acc: 0.7735 - val_loss:
0.5079 - val_acc: 0.7705
Epoch 9/10 - 58620/58620 - 571s 10ms/step - loss: 0.4886 - acc: 0.7842 - val_loss:
0.5067 - val_acc: 0.7703
Epoch 10/10 - 58620/58620 - 567s 10ms/step - loss: 0.4860 - acc: 0.7854 - val_loss:
0.5033 - val_acc: 0.7750

Double LSTM

Dataset 1:
Train on 41960 samples, validate on 10490 samples
Epoch 1/10 - 41960/41960 - 1385s 33ms/step - loss: 0.1165 - acc: 0.9727 - val_loss:
0.1468 - val_acc: 0.9743
Epoch 2/10 - 41960/41960 - 1432s 34ms/step - loss: 0.1153 - acc: 0.9739 - val_loss:
0.1196 - val_acc: 0.9743
Epoch 3/10 - 41960/41960 - 1817s 43ms/step - loss: 0.1228 - acc: 0.9735 - val_loss:
0.1197 - val_acc: 0.9743
Epoch 4/10 - 41960/41960 - 2186s 52ms/step - loss: 0.1225 - acc: 0.9735 - val_loss:
0.1200 - val_acc: 0.9743
Epoch 5/10 - 41960/41960 - 2339s 56ms/step - loss: 0.1223 - acc: 0.9735 - val_loss:
0.1188 - val_acc: 0.9743
Epoch 6/10 - 41960/41960 - 1462s 35ms/step - loss: 0.1177 - acc: 0.9735 - val_loss:
0.0976 - val_acc: 0.9742
Epoch 7/10 - 41960/41960 - 1951s 47ms/step - loss: 0.0973 - acc: 0.9735 - val_loss:
0.0818 - val_acc: 0.9745
Epoch 8/10 - 41960/41960 - 1164s 28ms/step - loss: 0.0794 - acc: 0.9739 - val_loss:
0.0815 - val_acc: 0.9744
Epoch 9/10 - 41960/41960 - 886s 21ms/step - loss: 0.0724 - acc: 0.9770 - val_loss:
0.0692 - val_acc: 0.9797
Epoch 10/10 - 41960/41960 - 1180s 28ms/step - loss: 0.0671 - acc: 0.9770 -
val_loss: 0.0717 - val_acc: 0.9806

Dataset 2:
Train on 21040 samples, validate on 5261 samples
Epoch 1/10 - 21040/21040 - 437s 21ms/step - loss: 0.6212 - acc: 0.6850 - val_loss:
0.6112 - val_acc: 0.6936
Epoch 2/10 - 21040/21040 - 382s 18ms/step - loss: 0.5993 - acc: 0.7019 - val_loss:
0.6059 - val_acc: 0.6972
Epoch 3/10 - 21040/21040 - 237s 11ms/step - loss: 0.5931 - acc: 0.7058 - val_loss:
0.6144 - val_acc: 0.6972
Epoch 4/10 - 21040/21040 - 252s 12ms/step - loss: 0.5872 - acc: 0.7077 - val_loss:
0.6053 - val_acc: 0.7018
Epoch 5/10 - 21040/21040 - 265s 13ms/step - loss: 0.5833 - acc: 0.7117 - val_loss:
0.6038 - val_acc: 0.7029
Epoch 6/10 - 21040/21040 - 279s 13ms/step - loss: 0.5796 - acc: 0.7135 - val_loss:

Deep learning for detecting integrity risks in text documents 58

Churer Schriften zur Informationswissenschaft – Schrift 103 Master Thesis Kalbermatter

Epoch 7/10 - 21040/21040 - 291s 14ms/step - loss: 0.5763 - acc: 0.7152 - val_loss:
0.6083 - val_acc: 0.6938
Epoch 8/10 - 21040/21040 - 287s 14ms/step - loss: 0.5796 - acc: 0.7141 - val_loss:
0.6048 - val_acc: 0.7001
Epoch 9/10 - 21040/21040 - 234s 11ms/step - loss: 0.5729 - acc: 0.7162 - val_loss:
0.6113 - val_acc: 0.7001
Epoch 10/10 - 21040/21040 - 234s 11ms/step - loss: 0.5698 - acc: 0.7191 - val_loss:
0.6062 - val_acc: 0.7029

Dataset 3:
Train on 58620 samples, validate on 14655 samples
Epoch 1/10 - 58620/58620 - 1651s 28ms/step - loss: 0.5454 - acc: 0.7509 - val_loss:
0.5363 - val_acc: 0.7485
Epoch 2/10 - 58620/58620 - 1146s 20ms/step - loss: 0.5341 - acc: 0.7548 - val_loss:
0.5742 - val_acc: 0.7387
Epoch 3/10 - 58620/58620 - 1144s 20ms/step - loss: 0.5635 - acc: 0.7441 - val_loss:
0.5538 - val_acc: 0.7387
Epoch 4/10 - 58620/58620 - 1143s 19ms/step - loss: 0.5559 - acc: 0.7441 - val_loss:
0.5475 - val_acc: 0.7387
Epoch 5/10 - 58620/58620 - 1130s 19ms/step - loss: 0.5235 - acc: 0.7598 - val_loss:
0.5298 - val_acc: 0.7636
Epoch 6/10 - 58620/58620 - 653s 11ms/step - loss: 0.5067 - acc: 0.7750 - val_loss:
0.5179 - val_acc: 0.7678
Epoch 7/10 - 58620/58620 - 654s 11ms/step - loss: 0.5005 - acc: 0.7785 - val_loss:
0.5129 - val_acc: 0.7680
Epoch 8/10 - 58620/58620 - 654s 11ms/step - loss: 0.4999 - acc: 0.7796 - val_loss:
0.5137 - val_acc: 0.7691
Epoch 9/10 - 58620/58620 - 653s 11ms/step - loss: 0.4944 - acc: 0.7821 - val_loss:
0.5133 - val_acc: 0.7672
Epoch 10/10 - 58620/58620 - 664s 11ms/step - loss: 0.4919 - acc: 0.7832 - val_loss:
0.5109 - val_acc: 0.7675

LSTM + Dropout

Dataset 1:
Train on 41960 samples, validate on 10490 samples
Epoch 1/10 - 41960/41960 - 1005s 24ms/step - loss: 0.1297 - acc: 0.9721 - val_loss:
0.0959 - val_acc: 0.9739
Epoch 2/10 - 41960/41960 - 851s 20ms/step - loss: 0.0902 - acc: 0.9740 - val_loss:
0.1095 - val_acc: 0.9770
Epoch 3/10 - 41960/41960 - 1102s 26ms/step - loss: 0.0671 - acc: 0.9777 - val_loss:
0.0827 - val_acc: 0.9790
Epoch 4/10 - 41960/41960 - 981s 23ms/step - loss: 0.0647 - acc: 0.9806 - val_loss:
0.0842 - val_acc: 0.9745
Epoch 5/10 - 41960/41960 - 1142s 27ms/step - loss: 0.0552 - acc: 0.9820 - val_loss:
0.0577 - val_acc: 0.9826
Epoch 6/10 - 41960/41960 - 1085s 26ms/step - loss: 0.0844 - acc: 0.9771 - val_loss:
0.0596 - val_acc: 0.9807
Epoch 7/10 - 41960/41960 - 727s 17ms/step - loss: 0.0712 - acc: 0.9752 - val_loss:
0.0665 - val_acc: 0.9800
Epoch 8/10 - 41960/41960 - 752s 18ms/step - loss: 0.0484 - acc: 0.9832 - val_loss:
0.0552 - val_acc: 0.9828

Deep learning for detecting integrity risks in text documents 59

Churer Schriften zur Informationswissenschaft – Schrift 103 Master Thesis Kalbermatter

Epoch 9/10 - 41960/41960 - 777s 19ms/step - loss: 0.0433 - acc: 0.9847 - val_loss:
0.0481 - val_acc: 0.9837
Epoch 10/10 - 41960/41960 - 806s 19ms/step - loss: 0.0441 - acc: 0.9844 - val_loss:
0.0522 - val_acc: 0.9815

Dataset 2:
Train on 21040 samples, validate on 5261 samples
Epoch 1/8 - 21040/21040 - 136s 6ms/step - loss: 0.6257 - acc: 0.6809 - val_loss:
0.6191 - val_acc: 0.6828
Epoch 2/8 - 21040/21040 - 299s 14ms/step - loss: 0.6063 - acc: 0.6943 - val_loss:
0.6022 - val_acc: 0.7004
Epoch 3/8 - 21040/21040 - 431s 21ms/step - loss: 0.5957 - acc: 0.7048 - val_loss:
0.6048 - val_acc: 0.6980
Epoch 4/8 - 21040/21040 - 429s 20ms/step - loss: 0.5907 - acc: 0.7080 - val_loss:
0.6166 - val_acc: 0.6911
Epoch 5/8 - 21040/21040 - 422s 20ms/step - loss: 0.5888 - acc: 0.7096 - val_loss:
0.6005 - val_acc: 0.7001
Epoch 6/8 - 21040/21040 - 210s 10ms/step - loss: 0.5868 - acc: 0.7117 - val_loss:
0.6003 - val_acc: 0.7020
Epoch 7/8 - 21040/21040 - 192s 9ms/step - loss: 0.5852 - acc: 0.7139 - val_loss:
0.5993 - val_acc: 0.7014
Epoch 8/8 - 21040/21040 - 192s 9ms/step - loss: 0.5875 - acc: 0.7116 - val_loss:
0.6006 - val_acc: 0.6997

Dataset 3:
Train on 58620 samples, validate on 14655 samples
Epoch 1/10 - 58620/58620 - 671s 11ms/step - loss: 0.5424 - acc: 0.7522 - val_loss:
0.5178 - val_acc: 0.7632
Epoch 2/10 - 58620/58620 - 304s 5ms/step - loss: 0.5150 - acc: 0.7684 - val_loss:
0.5161 - val_acc: 0.7651
Epoch 3/10 - 58620/58620 - 303s 5ms/step - loss: 0.5145 - acc: 0.7670 - val_loss:
0.5157 - val_acc: 0.7690
Epoch 4/10 - 58620/58620 - 303s 5ms/step - loss: 0.5024 - acc: 0.7763 - val_loss:
0.5167 - val_acc: 0.7529
Epoch 5/10 - 58620/58620 - 303s 5ms/step - loss: 0.5068 - acc: 0.7661 - val_loss:
0.5084 - val_acc: 0.7671
Epoch 6/10 - 58620/58620 - 304s 5ms/step - loss: 0.5083 - acc: 0.7654 - val_loss:
0.5058 - val_acc: 0.7718
Epoch 7/10 - 58620/58620 - 303s 5ms/step - loss: 0.5008 - acc: 0.7744 - val_loss:
0.5060 - val_acc: 0.7709
Epoch 8/10 - 58620/58620 - 303s 5ms/step - loss: 0.4985 - acc: 0.7749 - val_loss:
0.5200 - val_acc: 0.7554
Epoch 9/10 - 58620/58620 - 304s 5ms/step - loss: 0.4906 - acc: 0.7813 - val_loss:
0.5062 - val_acc: 0.7713
Epoch 10/10 - 58620/58620 - 304s 5ms/step - loss: 0.4921 - acc: 0.7813 - val_loss:
0.5033 - val_acc: 0.7715

GRU

Dataset 1:
Train on 41960 samples, validate on 10490 samples

Deep learning for detecting integrity risks in text documents 60

Churer Schriften zur Informationswissenschaft – Schrift 103 Master Thesis Kalbermatter

Epoch 1/10 - 41960/41960 - 331s 8ms/step - loss: 0.0418 - acc: 0.9859 - val_loss:
0.0416 - val_acc: 0.9865
Epoch 2/10 - 41960/41960 - 324s 8ms/step - loss: 0.0317 - acc: 0.9886 - val_loss:
0.0405 - val_acc: 0.9861
Epoch 3/10 - 41960/41960 - 325s 8ms/step - loss: 0.0281 - acc: 0.9898 - val_loss:
0.0425 - val_acc: 0.9849
Epoch 4/10 - 41960/41960 - 324s 8ms/step - loss: 0.0263 - acc: 0.9900 - val_loss:
0.0415 - val_acc: 0.9867
Epoch 5/10 - 41960/41960 - 324s 8ms/step - loss: 0.0246 - acc: 0.9904 - val_loss:
0.0466 - val_acc: 0.9859
Epoch 6/10 - 41960/41960 - 324s 8ms/step - loss: 0.0240 - acc: 0.9909 - val_loss:
0.0438 - val_acc: 0.9861
Epoch 7/10 - 41960/41960 - 325s 8ms/step - loss: 0.0225 - acc: 0.9917 - val_loss:
0.0470 - val_acc: 0.9861
Epoch 8/10 - 41960/41960 - 329s 8ms/step - loss: 0.0219 - acc: 0.9919 - val_loss:
0.0461 - val_acc: 0.9862
Epoch 9/10 - 41960/41960 - 325s 8ms/step - loss: 0.0198 - acc: 0.9927 - val_loss:
0.0516 - val_acc: 0.9845
Epoch 10/10 - 41960/41960 - 324s 8ms/step - loss: 0.0188 - acc: 0.9930 - val_loss:
0.0474 - val_acc: 0.9852

Dataset 2:
Train on 21040 samples, validate on 5261 samples
Epoch 1/15 - 21040/21040 - 172s 8ms/step - loss: 0.6261 - acc: 0.6798 - val_loss:
0.6191 - val_acc: 0.6894
Epoch 2/15 - 21040/21040 - 219s 10ms/step - loss: 0.6081 - acc: 0.6944 - val_loss:
0.6055 - val_acc: 0.6976
Epoch 3/15 - 21040/21040 - 221s 11ms/step - loss: 0.5965 - acc: 0.7013 - val_loss:
0.5936 - val_acc: 0.7098
Epoch 4/15 - 21040/21040 - 223s 11ms/step - loss: 0.5894 - acc: 0.7058 - val_loss:
0.5940 - val_acc: 0.7059
Epoch 5/15 - 21040/21040 - 222s 11ms/step - loss: 0.5842 - acc: 0.7063 - val_loss:
0.5962 - val_acc: 0.7023
Epoch 6/15 - 21040/21040 - 222s 11ms/step - loss: 0.5803 - acc: 0.7083 - val_loss:
0.5989 - val_acc: 0.7039
Epoch 7/15 - 21040/21040 - 222s 11ms/step - loss: 0.5766 - acc: 0.7109 - val_loss:
0.6023 - val_acc: 0.6997
Epoch 8/15 - 21040/21040 - 222s 11ms/step - loss: 0.5741 - acc: 0.7117 - val_loss:
0.6012 - val_acc: 0.7004
Epoch 9/15 - 21040/21040 - 183s 9ms/step - loss: 0.5721 - acc: 0.7120 - val_loss:
0.6031 - val_acc: 0.7042
Epoch 10/15 - 21040/21040 - 163s 8ms/step - loss: 0.5683 - acc: 0.7134 - val_loss:
0.6065 - val_acc: 0.7073
Epoch 11/15 - 21040/21040 - 164s 8ms/step - loss: 0.5643 - acc: 0.7175 - val_loss:
0.6094 - val_acc: 0.6972
Epoch 12/15 - 21040/21040 - 163s 8ms/step - loss: 0.5602 - acc: 0.7198 - val_loss:
0.6152 - val_acc: 0.7023
Epoch 13/15 - 21040/21040 - 164s 8ms/step - loss: 0.5605 - acc: 0.7187 - val_loss:
0.6160 - val_acc: 0.6997
Epoch 14/15 - 21040/21040 - 163s 8ms/step - loss: 0.5550 - acc: 0.7231 - val_loss:
0.6244 - val_acc: 0.7006

Deep learning for detecting integrity risks in text documents 61

Churer Schriften zur Informationswissenschaft – Schrift 103 Master Thesis Kalbermatter

Epoch 15/15 - 21040/21040 - 164s 8ms/step - loss: 0.5521 - acc: 0.7255 - val_loss:
0.6258 - val_acc: 0.7016

Dataset 3:
Train on 58620 samples, validate on 14655 samples
Epoch 1/15 - 58620/58620 - 1015s 17ms/step - loss: 0.5562 - acc: 0.7447 - val_loss:
0.5247 - val_acc: 0.7564
Epoch 2/15 - 58620/58620 - 929s 16ms/step - loss: 0.5149 - acc: 0.7680 - val_loss:
0.5111 - val_acc: 0.7679
Epoch 3/15 - 58620/58620 - 933s 16ms/step - loss: 0.5045 - acc: 0.7751 - val_loss:
0.5067 - val_acc: 0.7729
Epoch 4/15 - 58620/58620 - 977s 17ms/step - loss: 0.4977 - acc: 0.7800 - val_loss:
0.4993 - val_acc: 0.7776
Epoch 5/15 - 58620/58620 - 822s 14ms/step - loss: 0.4934 - acc: 0.7824 - val_loss:
0.4977 - val_acc: 0.7772
Epoch 6/15 - 58620/58620 - 866s 15ms/step - loss: 0.4913 - acc: 0.7832 - val_loss:
0.5010 - val_acc: 0.7722
Epoch 7/15 - 58620/58620 - 736s 13ms/step - loss: 0.4894 - acc: 0.7835 - val_loss:
0.4993 - val_acc: 0.7779
Epoch 8/15 - 58620/58620 - 437s 7ms/step - loss: 0.4851 - acc: 0.7871 - val_loss:
0.4989 - val_acc: 0.7769
Epoch 9/15 - 58620/58620 - 558s 10ms/step - loss: 0.4823 - acc: 0.7886 - val_loss:
0.4971 - val_acc: 0.7780
Epoch 10/15 - 58620/58620 - 560s 10ms/step - loss: 0.4787 - acc: 0.7911 - val_loss:
0.4979 - val_acc: 0.7774
Epoch 11/15 - 58620/58620 - 479s 8ms/step - loss: 0.4753 - acc: 0.7923 - val_loss:
0.4997 - val_acc: 0.7756
Epoch 12/15 - 58620/58620 - 534s 9ms/step - loss: 0.4724 - acc: 0.7936 - val_loss:
0.5027 - val_acc: 0.7750
Epoch 13/15 - 58620/58620 - 321s 5ms/step - loss: 0.4682 - acc: 0.7968 - val_loss:
0.5055 - val_acc: 0.7776
Epoch 14/15 - 58620/58620 - 320s 5ms/step - loss: 0.4641 - acc: 0.7984 - val_loss:
0.5150 - val_acc: 0.7732
Epoch 15/15 - 58620/58620 - 320s 5ms/step - loss: 0.4607 - acc: 0.8004 - val_loss:
0.5123 - val_acc: 0.7737

Double GRU

Dataset 1:
Train on 41960 samples, validate on 10490 samples
Epoch 1/10 - 41960/41960 - 689s 16ms/step - loss: 0.1074 - acc: 0.9748 - val_loss:
0.0734 - val_acc: 0.9790
Epoch 2/10 - 41960/41960 - 650s 15ms/step - loss: 0.0657 - acc: 0.9809 - val_loss:
0.0539 - val_acc: 0.9826
Epoch 3/10 - 41960/41960 - 649s 15ms/step - loss: 0.0527 - acc: 0.9833 - val_loss:
0.0481 - val_acc: 0.9832
Epoch 4/10 - 41960/41960 - 649s 15ms/step - loss: 0.0388 - acc: 0.9865 - val_loss:
0.0474 - val_acc: 0.9818
Epoch 5/10 - 41960/41960 - 655s 16ms/step - loss: 0.0351 - acc: 0.9871 - val_loss:
0.0445 - val_acc: 0.9855

Deep learning for detecting integrity risks in text documents 62

Churer Schriften zur Informationswissenschaft – Schrift 103 Master Thesis Kalbermatter

Epoch 6/10 - 41960/41960 - 799s 19ms/step - loss: 0.0328 - acc: 0.9882 - val_loss:
0.0478 - val_acc: 0.9861
Epoch 7/10 - 41960/41960 - 1149s 27ms/step - loss: 0.0306 - acc: 0.9887 - val_loss:
0.0475 - val_acc: 0.9854
Epoch 8/10 - 41960/41960 - 1145s 27ms/step - loss: 0.0290 - acc: 0.9890 - val_loss:
0.0423 - val_acc: 0.9862
Epoch 9/10 - 41960/41960 - 1473s 35ms/step - loss: 0.0283 - acc: 0.9897 - val_loss:
0.0423 - val_acc: 0.9845
Epoch 10/10 - 41960/41960 - 1792s 43ms/step - loss: 0.0269 - acc: 0.9905 -
val_loss: 0.0425 - val_acc: 0.9856

Dataset 2:
Train on 21040 samples, validate on 5261 samples
Epoch 1/10 - 21040/21040 - 462s 22ms/step - loss: 0.6263 - acc: 0.6771 - val_loss:
0.6046 - val_acc: 0.7029
Epoch 2/10 - 21040/21040 - 453s 22ms/step - loss: 0.6081 - acc: 0.6914 - val_loss:
0.5925 - val_acc: 0.7075
Epoch 3/10 - 21040/21040 - 454s 22ms/step - loss: 0.5965 - acc: 0.7012 - val_loss:
0.5974 - val_acc: 0.7098
Epoch 4/10 - 21040/21040 - 383s 18ms/step - loss: 0.5913 - acc: 0.7035 - val_loss:
0.5994 - val_acc: 0.7079
Epoch 5/10 - 21040/21040 - 330s 16ms/step - loss: 0.5841 - acc: 0.7077 - val_loss:
0.6053 - val_acc: 0.7109
Epoch 6/10 - 21040/21040 - 330s 16ms/step - loss: 0.5765 - acc: 0.7119 - val_loss:
0.5977 - val_acc: 0.7025
Epoch 7/10 - 21040/21040 - 307s 15ms/step - loss: 0.5727 - acc: 0.7139 - val_loss:
0.6014 - val_acc: 0.7082
Epoch 8/10 - 21040/21040 - 233s 11ms/step - loss: 0.5688 - acc: 0.7154 - val_loss:
0.6087 - val_acc: 0.7079
Epoch 9/10 - 21040/21040 - 233s 11ms/step - loss: 0.5652 - acc: 0.7161 - val_loss:
0.6191 - val_acc: 0.6940
Epoch 10/10 - 21040/21040 - 233s 11ms/step - loss: 0.5643 - acc: 0.7153 - val_loss:
0.6107 - val_acc: 0.7109

Dataset 3:
Train on 58620 samples, validate on 14655 samples
Epoch 1/10 - 58620/58620 - 1003s 17ms/step - loss: 0.5433 - acc: 0.7510 -
val_loss: 0.5236 - val_acc: 0.7639
Epoch 2/10 - 58620/58620 - 787s 13ms/step - loss: 0.5187 - acc: 0.7644 - val_loss:
0.5116 - val_acc: 0.7713
Epoch 3/10 - 58620/58620 - 1026s 18ms/step - loss: 0.5024 - acc: 0.7757 -
val_loss: 0.5001 - val_acc: 0.7779
Epoch 4/10 - 58620/58620 - 664s 11ms/step - loss: 0.4944 - acc: 0.7795 - val_loss:
0.5001 - val_acc: 0.7764
Epoch 5/10 - 58620/58620 - 643s 11ms/step - loss: 0.4977 - acc: 0.7785 - val_loss:
0.5016 - val_acc: 0.7778
Epoch 6/10 - 58620/58620 - 648s 11ms/step - loss: 0.4893 - acc: 0.7834 - val_loss:
0.4953 - val_acc: 0.7784
Epoch 7/10 - 58620/58620 - 647s 11ms/step - loss: 0.4881 - acc: 0.7848 - val_loss:
0.4975 - val_acc: 0.7795

Deep learning for detecting integrity risks in text documents 63

0.6089 - val_acc: 0.7050

Churer Schriften zur Informationswissenschaft – Schrift 103 Master Thesis Kalbermatter

Epoch 8/10 - 58620/58620 - 642s 11ms/step - loss: 0.4848 - acc: 0.7861 - val_loss:
0.4982 - val_acc: 0.7796
Epoch 9/10 - 58620/58620 - 643s 11ms/step - loss: 0.4820 - acc: 0.7870 - val_loss:
0.4998 - val_acc: 0.7776
Epoch 10/10 - 58620/58620 - 643s 11ms/step - loss: 0.4790 - acc: 0.7889 -
val_loss: 0.5009 - val_acc: 0.7784

GRU + Dropout

Dataset 1:
Train on 41960 samples, validate on 10490 samples
Epoch 1/10 - 41960/41960 - 520s 12ms/step - loss: 0.1136 - acc: 0.9722 - val_loss:
0.0681 - val_acc: 0.9796
Epoch 2/10 - 41960/41960 - 549s 13ms/step - loss: 0.0677 - acc: 0.9784 - val_loss:
0.1035 - val_acc: 0.9704
Epoch 3/10 - 41960/41960 - 554s 13ms/step - loss: 0.0575 - acc: 0.9809 - val_loss:
0.0490 - val_acc: 0.9829
Epoch 4/10 - 41960/41960 - 548s 13ms/step - loss: 0.0347 - acc: 0.9874 - val_loss:
0.0396 - val_acc: 0.9870
Epoch 5/10 - 41960/41960 - 548s 13ms/step - loss: 0.0304 - acc: 0.9885 - val_loss:
0.0437 - val_acc: 0.9871
Epoch 6/10 - 41960/41960 - 554s 13ms/step - loss: 0.0284 - acc: 0.9893 - val_loss:
0.0374 - val_acc: 0.9869
Epoch 7/10 - 41960/41960 - 841s 20ms/step - loss: 0.0274 - acc: 0.9894 - val_loss:
0.0360 - val_acc: 0.9883
Epoch 8/10 - 41960/41960 - 658s 16ms/step - loss: 0.0260 - acc: 0.9903 - val_loss:
0.0395 - val_acc: 0.9849
Epoch 9/10 - 41960/41960 - 832s 20ms/step - loss: 0.0251 - acc: 0.9902 - val_loss:
0.0402 - val_acc: 0.9862
Epoch 10/10 - 41960/41960 - 864s 21ms/step - loss: 0.0237 - acc: 0.9908 - val_loss:
0.0419 - val_acc: 0.9867

Dataset 2:
Train on 21040 samples, validate on 5261 samples
Epoch 1/15 - 21040/21040 - 192s 9ms/step - loss: 0.6266 - acc: 0.6807 - val_loss:
0.6170 - val_acc: 0.6852
Epoch 2/15 - 21040/21040 - 339s 16ms/step - loss: 0.6125 - acc: 0.6878 - val_loss:
0.5997 - val_acc: 0.7037
Epoch 3/15 - 21040/21040 - 340s 16ms/step - loss: 0.5970 - acc: 0.7035 - val_loss:
0.6045 - val_acc: 0.6945
Epoch 4/15 - 21040/21040 - 341s 16ms/step - loss: 0.5919 - acc: 0.7051 - val_loss:
0.5991 - val_acc: 0.7027
Epoch 5/15 - 21040/21040 - 339s 16ms/step - loss: 0.5862 - acc: 0.7074 - val_loss:
0.5969 - val_acc: 0.7044
Epoch 6/15 - 21040/21040 - 204s 10ms/step - loss: 0.5817 - acc: 0.7120 - val_loss:
0.5945 - val_acc: 0.7058
Epoch 7/15 - 21040/21040 - 160s 8ms/step - loss: 0.5779 - acc: 0.7136 - val_loss:
0.5983 - val_acc: 0.7033
Epoch 8/15 - 21040/21040 - 159s 8ms/step - loss: 0.5740 - acc: 0.7155 - val_loss:
0.6035 - val_acc: 0.7039
Epoch 9/15 - 21040/21040 - 154s 7ms/step - loss: 0.5716 - acc: 0.7146 - val_loss:

Deep learning for detecting integrity risks in text documents 64

Churer Schriften zur Informationswissenschaft – Schrift 103 Master Thesis Kalbermatter

Epoch 10/15 - 21040/21040 - 116s 5ms/step - loss: 0.5703 - acc: 0.7165 - val_loss:
0.6047 - val_acc: 0.7029
Epoch 11/15 - 21040/21040 - 116s 5ms/step - loss: 0.5651 - acc: 0.7179 - val_loss:
0.6089 - val_acc: 0.6995
Epoch 12/15 - 21040/21040 - 116s 5ms/step - loss: 0.5799 - acc: 0.7075 - val_loss:
0.6104 - val_acc: 0.7001
Epoch 13/15 - 21040/21040 - 116s 5ms/step - loss: 0.5622 - acc: 0.7184 - val_loss:
0.6128 - val_acc: 0.7001
Epoch 14/15 - 21040/21040 - 116s 5ms/step - loss: 0.5579 - acc: 0.7207 - val_loss:
0.6266 - val_acc: 0.6980
Epoch 15/15 - 21040/21040 - 116s 5ms/step - loss: 0.5574 - acc: 0.7228 - val_loss:
0.6206 - val_acc: 0.6985

Dataset 3:
Train on 2216 samples, validate on 554 samples
Epoch 1/10 - 2216/2216 - 54s 24ms/step - loss: 0.5697 - acc: 0.6832 - val_loss:
0.4561 - val_acc: 0.7762
Epoch 2/10 - 2216/2216 - 53s 24ms/step - loss: 0.4120 - acc: 0.8089 - val_loss:
0.3012 - val_acc: 0.8899
Epoch 3/10 - 2216/2216 - 49s 22ms/step - loss: 0.2985 - acc: 0.8883 - val_loss:
0.4100 - val_acc: 0.8159
Epoch 4/10 - 2216/2216 - 49s 22ms/step - loss: 0.2612 - acc: 0.9066 - val_loss:
0.2736 - val_acc: 0.9034
Epoch 5/10 - 2216/2216 - 48s 22ms/step - loss: 0.2112 - acc: 0.9285 - val_loss:
0.3041 - val_acc: 0.9007
Epoch 6/10 - 2216/2216 - 51s 23ms/step - loss: 0.2609 - acc: 0.9075 - val_loss:
0.2511 - val_acc: 0.9025
Epoch 7/10 - 2216/2216 - 55s 25ms/step - loss: 0.2031 - acc: 0.9296 - val_loss:
0.2510 - val_acc: 0.9061
Epoch 8/10 - 2216/2216 - 48s 22ms/step - loss: 0.1821 - acc: 0.9341 - val_loss:
0.3400 - val_acc: 0.8556
Epoch 9/10 - 2216/2216 - 37s 17ms/step - loss: 0.2255 - acc: 0.9264 - val_loss:
0.2284 - val_acc: 0.9224
Epoch 10/10 - 2216/2216 - 62s 28ms/step - loss: 0.1606 - acc: 0.9488 - val_loss:
0.1929 - val_acc: 0.9305

LSTM Bidirectional

Dataset 1:
Train on 41960 samples, validate on 10490 samples
Epoch 1/10 - 41960/41960 - 588s 14ms/step - loss: 0.0933 - acc: 0.9748 - val_loss:
0.0536 - val_acc: 0.9827
Epoch 2/10 - 41960/41960 - 553s 13ms/step - loss: 0.0495 - acc: 0.9826 - val_loss:
0.0473 - val_acc: 0.9844
Epoch 3/10 - 41960/41960 - 468s 11ms/step - loss: 0.0381 - acc: 0.9864 - val_loss:
0.0422 - val_acc: 0.9868
Epoch 4/10 - 41960/41960 - 426s 10ms/step - loss: 0.0335 - acc: 0.9879 - val_loss:
0.0412 - val_acc: 0.9874
Epoch 5/10 - 41960/41960 - 431s 10ms/step - loss: 0.0291 - acc: 0.9897 - val_loss:
0.0415 - val_acc: 0.9871
Epoch 6/10 - 41960/41960 - 538s 13ms/step - loss: 0.0260 - acc: 0.9905 - val_loss:
0.0444 - val_acc: 0.9854

Deep learning for detecting integrity risks in text documents 65

Churer Schriften zur Informationswissenschaft – Schrift 103 Master Thesis Kalbermatter

Epoch 7/10 - 41960/41960 - 610s 15ms/step - loss: 0.0247 - acc: 0.9914 - val_loss:
0.0446 - val_acc: 0.9861
Epoch 8/10 - 41960/41960 - 494s 12ms/step - loss: 0.0228 - acc: 0.9921 - val_loss:
0.0561 - val_acc: 0.9850
Epoch 9/10 - 41960/41960 - 424s 10ms/step - loss: 0.0223 - acc: 0.9921 - val_loss:
0.0451 - val_acc: 0.9852
Epoch 10/10 - 41960/41960 - 415s 10ms/step - loss: 0.0176 - acc: 0.9938 - val_loss:
0.0469 - val_acc: 0.9870

Dataset 2:
Train on 21040 samples, validate on 5261 samples
Epoch 1/8 - 21040/21040 - 169s 8ms/step - loss: 0.6205 - acc: 0.6838 - val_loss:
0.6113 - val_acc: 0.6976
Epoch 2/8 - 21040/21040 - 189s 9ms/step - loss: 0.5986 - acc: 0.7008 - val_loss:
0.6031 - val_acc: 0.6949
Epoch 3/8 - 21040/21040 - 183s 9ms/step - loss: 0.5913 - acc: 0.7048 - val_loss:
0.6027 - val_acc: 0.7001
Epoch 4/8 - 21040/21040 - 184s 9ms/step - loss: 0.5814 - acc: 0.7102 - val_loss:
0.6070 - val_acc: 0.6999
Epoch 5/8 - 21040/21040 - 183s 9ms/step - loss: 0.5778 - acc: 0.7122 - val_loss:
0.6074 - val_acc: 0.6909
Epoch 6/8 - 21040/21040 - 184s 9ms/step - loss: 0.5714 - acc: 0.7154 - val_loss:
0.6041 - val_acc: 0.6999
Epoch 7/8 - 21040/21040 - 183s 9ms/step - loss: 0.5654 - acc: 0.7188 - val_loss:
0.6080 - val_acc: 0.6942
Epoch 8/8 - 21040/21040 - 183s 9ms/step - loss: 0.5609 - acc: 0.7216 - val_loss:
0.6133 - val_acc: 0.6911

Dataset 3:
Train on 58620 samples, validate on 14655 samples
Epoch 1/8 - 58620/58620 - 626s 11ms/step - loss: 0.5414 - acc: 0.7504 - val_loss:
0.5253 - val_acc: 0.7545
Epoch 2/8 - 58620/58620 - 511s 9ms/step - loss: 0.5077 - acc: 0.7702 - val_loss:
0.5055 - val_acc: 0.7702
Epoch 3/8 - 58620/58620 - 502s 9ms/step - loss: 0.4954 - acc: 0.7806 - val_loss:
0.5024 - val_acc: 0.7726
Epoch 4/8 - 58620/58620 - 505s 9ms/step - loss: 0.4903 - acc: 0.7824 - val_loss:
0.5011 - val_acc: 0.7745
Epoch 5/8 - 58620/58620 - 502s 9ms/step - loss: 0.4856 - acc: 0.7849 - val_loss:
0.4998 - val_acc: 0.7773
Epoch 6/8 - 58620/58620 - 518s 9ms/step - loss: 0.4817 - acc: 0.7874 - val_loss:
0.4979 - val_acc: 0.7783
Epoch 7/8 - 58620/58620 - 528s 9ms/step - loss: 0.4772 - acc: 0.7899 - val_loss:
0.5045 - val_acc: 0.7745
Epoch 8/8 - 58620/58620 - 571s 10ms/step - loss: 0.4730 - acc: 0.7915 - val_loss:
0.5029 - val_acc: 0.7752

LSTM Bidirectional + Dropout

Dataset 1:

Deep learning for detecting integrity risks in text documents 66

Churer Schriften zur Informationswissenschaft – Schrift 103 Master Thesis Kalbermatter

Train on 41960 samples, validate on 10490 samples
Epoch 1/10 - 41960/41960 - 564s 13ms/step - loss: 0.1086 - acc: 0.9737 - val_loss:
0.0634 - val_acc: 0.9724
Epoch 2/10 - 41960/41960 - 561s 13ms/step - loss: 0.0646 - acc: 0.9786 - val_loss:
0.0525 - val_acc: 0.9817
Epoch 3/10 - 41960/41960 - 476s 11ms/step - loss: 0.0472 - acc: 0.9847 - val_loss:
0.0492 - val_acc: 0.9843
Epoch 4/10 - 41960/41960 - 432s 10ms/step - loss: 0.0419 - acc: 0.9864 - val_loss:
0.0396 - val_acc: 0.9863
Epoch 5/10 - 41960/41960 - 438s 10ms/step - loss: 0.0356 - acc: 0.9884 - val_loss:
0.0387 - val_acc: 0.9875
Epoch 6/10 - 41960/41960 - 547s 13ms/step - loss: 0.0328 - acc: 0.9893 - val_loss:
0.0382 - val_acc: 0.9878
Epoch 7/10 - 41960/41960 - 619s 15ms/step - loss: 0.0300 - acc: 0.9900 - val_loss:
0.0457 - val_acc: 0.9848
Epoch 8/10 - 41960/41960 - 497s 12ms/step - loss: 0.0272 - acc: 0.9908 - val_loss:
0.0443 - val_acc: 0.9858
Epoch 9/10 - 41960/41960 - 428s 10ms/step - loss: 0.0249 - acc: 0.9919 - val_loss:
0.0410 - val_acc: 0.9875
Epoch 10/10 - 41960/41960 - 409s 10ms/step - loss: 0.0232 - acc: 0.9923 - val_loss:
0.0468 - val_acc: 0.9859

Dataset 2:
Train on 21040 samples, validate on 5261 samples
Epoch 1/8 - 21040/21040 - 199s 9ms/step - loss: 0.6200 - acc: 0.6868 - val_loss:
0.6185 - val_acc: 0.6807
Epoch 2/8 - 21040/21040 - 181s 9ms/step - loss: 0.5990 - acc: 0.7042 - val_loss:
0.6113 - val_acc: 0.6907
Epoch 3/8 - 21040/21040 - 181s 9ms/step - loss: 0.5896 - acc: 0.7075 - val_loss:
0.6107 - val_acc: 0.6892
Epoch 4/8 - 21040/21040 - 180s 9ms/step - loss: 0.5853 - acc: 0.7103 - val_loss:
0.6149 - val_acc: 0.6881
Epoch 5/8 - 21040/21040 - 180s 9ms/step - loss: 0.5782 - acc: 0.7170 - val_loss:
0.6126 - val_acc: 0.6883
Epoch 6/8 - 21040/21040 - 181s 9ms/step - loss: 0.5707 - acc: 0.7222 - val_loss:
0.6204 - val_acc: 0.6921
Epoch 7/8 - 21040/21040 - 180s 9ms/step - loss: 0.5690 - acc: 0.7226 - val_loss:
0.6192 - val_acc: 0.6921
Epoch 8/8 - 21040/21040 - 156s 7ms/step - loss: 0.5664 - acc: 0.7234 - val_loss:
0.6233 - val_acc: 0.6871

Dataset 3:
Train on 58620 samples, validate on 14655 samples
Epoch 1/8 - 58620/58620 - 615s 10ms/step - loss: 0.5424 - acc: 0.7508 - val_loss:
0.5260 - val_acc: 0.7611
Epoch 2/8 - 58620/58620 - 504s 9ms/step - loss: 0.5078 - acc: 0.7743 - val_loss:
0.5148 - val_acc: 0.7687
Epoch 3/8 - 58620/58620 - 503s 9ms/step - loss: 0.4994 - acc: 0.7773 - val_loss:
0.5106 - val_acc: 0.7677
Epoch 4/8 - 58620/58620 - 506s 9ms/step - loss: 0.4931 - acc: 0.7823 - val_loss:
0.5071 - val_acc: 0.7702

Deep learning for detecting integrity risks in text documents 67

Churer Schriften zur Informationswissenschaft – Schrift 103 Master Thesis Kalbermatter

Epoch 5/8 - 58620/58620 - 504s 9ms/step - loss: 0.4900 - acc: 0.7845 - val_loss:
0.5073 - val_acc: 0.7724
Epoch 6/8 - 58620/58620 - 521s 9ms/step - loss: 0.4864 - acc: 0.7860 - val_loss:
0.5105 - val_acc: 0.7679
Epoch 7/8 - 58620/58620 - 553s 9ms/step - loss: 0.4810 - acc: 0.7885 - val_loss:
0.5073 - val_acc: 0.7725
Epoch 8/8 - 58620/58620 - 515s 9ms/step - loss: 0.4768 - acc: 0.7909 - val_loss:
0.5162 - val_acc: 0.7717

Appendix B Training Results for Pre-Trained Word Embedding Models

CNN

Dataset 1:
Train on 2216 samples, validate on 554 samples
Epoch 1/10 - 2216/2216 - 65s 29ms/step - loss: 0.4927 - acc: 0.7739 - val_loss:
0.2307 - val_acc: 0.9260
Epoch 2/10 - 2216/2216 - 62s 28ms/step - loss: 0.1647 - acc: 0.9393 - val_loss:
0.1219 - val_acc: 0.9477
Epoch 3/10 - 2216/2216 - 62s 28ms/step - loss: 0.1018 - acc: 0.9594 - val_loss:
0.1109 - val_acc: 0.9504
Epoch 4/10 - 2216/2216 - 61s 28ms/step - loss: 0.0739 - acc: 0.9700 - val_loss:
0.0919 - val_acc: 0.9693
Epoch 5/10 - 2216/2216 - 62s 28ms/step - loss: 0.0499 - acc: 0.9871 - val_loss:
0.0965 - val_acc: 0.9684
Epoch 6/10 - 2216/2216 - 62s 28ms/step - loss: 0.0325 - acc: 0.9941 - val_loss:
0.0960 - val_acc: 0.9666
Epoch 7/10 - 2216/2216 - 62s 28ms/step - loss: 0.0200 - acc: 0.9977 - val_loss:
0.0910 - val_acc: 0.9693
Epoch 8/10 - 2216/2216 - 62s 28ms/step - loss: 0.0118 - acc: 0.9993 - val_loss:
0.0951 - val_acc: 0.9684
Epoch 9/10 - 2216/2216 - 62s 28ms/step - loss: 0.0079 - acc: 1.0000 - val_loss:
0.0908 - val_acc: 0.9711
Epoch 10/10 - 2216/2216 - 57s 26ms/step - loss: 0.0053 - acc: 1.0000 - val_loss:
0.1085 - val_acc: 0.9657

Dataset 2:
Train on 979 samples, validate on 244 samples
Epoch 1/10 - 979/979 - 13s 13ms/step - loss: 0.6684 - acc: 0.6093 - val_loss: 0.6289
- val_acc: 0.6680
Epoch 2/10 - 979/979 - 12s 12ms/step - loss: 0.6061 - acc: 0.6747 - val_loss: 0.6530
- val_acc: 0.6209
Epoch 3/10 - 979/979 - 12s 12ms/step - loss: 0.5667 - acc: 0.7140 - val_loss: 0.5792
- val_acc: 0.6988
Epoch 4/10 - 979/979 - 12s 13ms/step - loss: 0.5244 - acc: 0.7375 - val_loss: 0.6238
- val_acc: 0.6455
Epoch 5/10 - 979/979 - 13s 13ms/step - loss: 0.4800 - acc: 0.7840 - val_loss: 0.5737
- val_acc: 0.7234
Epoch 6/10 - 979/979 - 13s 13ms/step - loss: 0.4525 - acc: 0.7932 - val_loss: 0.6589
- val_acc: 0.6352
Epoch 7/10 - 979/979 - 14s 14ms/step - loss: 0.3798 - acc: 0.8493 - val_loss: 0.6105
- val_acc: 0.6906

Deep learning for detecting integrity risks in text documents 68

Churer Schriften zur Informationswissenschaft – Schrift 103 Master Thesis Kalbermatter

Epoch 8/10 - 979/979 - 12s 13ms/step - loss: 0.3265 - acc: 0.8810 - val_loss: 0.6067
- val_acc: 0.7029
Epoch 9/10 - 979/979 - 12s 13ms/step - loss: 0.2692 - acc: 0.9162 - val_loss: 0.6210
- val_acc: 0.6988
Epoch 10/10 - 979/979 - 12s 12ms/step - loss: 0.2290 - acc: 0.9346 - val_loss:
0.8152 - val_acc: 0.6148

Dataset 3:
Train on 2981 samples, validate on 745 samples
Epoch 1/10 - 2981/2981 - 51s 17ms/step - loss: 0.5233 - acc: 0.7444 - val_loss:
0.3804 - val_acc: 0.8114
Epoch 2/10 - 2981/2981 - 54s 18ms/step - loss: 0.3178 - acc: 0.8564 - val_loss:
0.3194 - val_acc: 0.8483
Epoch 3/10 - 2981/2981 - 61s 20ms/step - loss: 0.2480 - acc: 0.8900 - val_loss:
0.3005 - val_acc: 0.8577
Epoch 4/10 - 2981/2981 - 82s 28ms/step - loss: 0.2205 - acc: 0.9031 - val_loss:
0.3252 - val_acc: 0.8597
Epoch 5/10 - 2981/2981 - 83s 28ms/step - loss: 0.1873 - acc: 0.9242 - val_loss:
0.2962 - val_acc: 0.8758
Epoch 6/10 - 2981/2981 - 83s 28ms/step - loss: 0.1365 - acc: 0.9520 - val_loss:
0.3189 - val_acc: 0.8685
Epoch 7/10 - 2981/2981 - 84s 28ms/step - loss: 0.1052 - acc: 0.9668 - val_loss:
0.3061 - val_acc: 0.8758
Epoch 8/10 - 2981/2981 - 83s 28ms/step - loss: 0.0656 - acc: 0.9866 - val_loss:
0.3218 - val_acc: 0.8805
Epoch 9/10 - 2981/2981 - 82s 28ms/step - loss: 0.0417 - acc: 0.9928 - val_loss:
0.3498 - val_acc: 0.8785
Epoch 10/10 - 2981/2981 - 85s 29ms/step - loss: 0.0246 - acc: 0.9973 - val_loss:
0.3523 - val_acc: 0.8799

RCNN

Dataset 1:
Train on 2216 samples, validate on 554 samples
Epoch 1/10 - 2216/2216 - 44s 20ms/step - loss: 0.4142 - acc: 0.7954 - val_loss:
0.1333 - val_acc: 0.9567
Epoch 2/10 - 2216/2216 - 40s 18ms/step - loss: 0.1230 - acc: 0.9562 - val_loss:
0.1138 - val_acc: 0.9567
Epoch 3/10 - 2216/2216 - 41s 19ms/step - loss: 0.1001 - acc: 0.9610 - val_loss:
0.1023 - val_acc: 0.9567
Epoch 4/10 - 2216/2216 - 48s 21ms/step - loss: 0.0784 - acc: 0.9659 - val_loss:
0.1263 - val_acc: 0.9341
Epoch 5/10 - 2216/2216 - 48s 22ms/step - loss: 0.0851 - acc: 0.9639 - val_loss:
0.1072 - val_acc: 0.9540
Epoch 6/10 - 2216/2216 - 61s 28ms/step - loss: 0.0753 - acc: 0.9713 - val_loss:
0.1788 - val_acc: 0.9431
Epoch 7/10 - 2216/2216 - 61s 28ms/step - loss: 0.0775 - acc: 0.9725 - val_loss:
0.1095 - val_acc: 0.9702
Epoch 8/10 - 2216/2216 - 62s 28ms/step - loss: 0.0436 - acc: 0.9878 - val_loss:
0.1004 - val_acc: 0.9711
Epoch 9/10 - 2216/2216 - 56s 25ms/step - loss: 0.0316 - acc: 0.9926 - val_loss:
0.1233 - val_acc: 0.9720

Deep learning for detecting integrity risks in text documents 69

Churer Schriften zur Informationswissenschaft – Schrift 103 Master Thesis Kalbermatter

Epoch 10/10 - 2216/2216 - 56s 25ms/step - loss: 0.0340 - acc: 0.9919 - val_loss:
0.1118 - val_acc: 0.9702

Dataset 2:
Train on 979 samples, validate on 244 samples
Epoch 1/10 - 979/979 - 27s 27ms/step - loss: 0.6733 - acc: 0.6001 - val_loss: 0.6648
- val_acc: 0.5922
Epoch 2/10 - 979/979 - 23s 24ms/step - loss: 0.6402 - acc: 0.6195 - val_loss: 0.6522
- val_acc: 0.6045
Epoch 3/10 - 979/979 - 23s 24ms/step - loss: 0.5982 - acc: 0.7033 - val_loss: 0.6792
- val_acc: 0.6516
Epoch 4/10 - 979/979 - 23s 23ms/step - loss: 0.5872 - acc: 0.6997 - val_loss: 0.6735
- val_acc: 0.6373
Epoch 5/10 - 979/979 - 23s 24ms/step - loss: 0.5644 - acc: 0.7114 - val_loss: 0.6341
- val_acc: 0.6250
Epoch 6/10 - 979/979 - 23s 24ms/step - loss: 0.5337 - acc: 0.7451 - val_loss: 0.6544
- val_acc: 0.6352
Epoch 7/10 - 979/979 - 23s 24ms/step - loss: 0.5164 - acc: 0.7697 - val_loss: 0.6341
- val_acc: 0.6496
Epoch 8/10 - 979/979 - 23s 23ms/step - loss: 0.5061 - acc: 0.7732 - val_loss: 0.6388
- val_acc: 0.6270
Epoch 9/10 - 979/979 - 23s 23ms/step - loss: 0.4645 - acc: 0.8166 - val_loss: 0.7012
- val_acc: 0.6496
Epoch 10/10 - 979/979 - 23s 24ms/step - loss: 0.4447 - acc: 0.8100 - val_loss:
0.6725 - val_acc: 0.6332

Dataset 3:
Train on 2981 samples, validate on 745 samples
Epoch 1/10 - 2981/2981 - 67s 23ms/step - loss: 0.5374 - acc: 0.7196 - val_loss:
0.4120 - val_acc: 0.7899
Epoch 2/10 - 2981/2981 - 57s 19ms/step - loss: 0.3408 - acc: 0.8375 - val_loss:
0.3565 - val_acc: 0.8195
Epoch 3/10 - 2981/2981 - 56s 19ms/step - loss: 0.2922 - acc: 0.8640 - val_loss:
0.3578 - val_acc: 0.8255
Epoch 4/10 - 2981/2981 - 54s 18ms/step - loss: 0.2829 - acc: 0.8678 - val_loss:
0.3448 - val_acc: 0.8389
Epoch 5/10 - 2981/2981 - 55s 19ms/step - loss: 0.2373 - acc: 0.8940 - val_loss:
0.3464 - val_acc: 0.8436
Epoch 6/10 - 2981/2981 - 58s 19ms/step - loss: 0.2387 - acc: 0.8977 - val_loss:
0.3490 - val_acc: 0.8275
Epoch 7/10 - 2981/2981 - 58s 19ms/step - loss: 0.2080 - acc: 0.9136 - val_loss:
0.3503 - val_acc: 0.8376
Epoch 8/10 - 2981/2981 - 59s 20ms/step - loss: 0.1716 - acc: 0.9301 - val_loss:
0.3691 - val_acc: 0.8456
Epoch 9/10 - 2981/2981 - 58s 19ms/step - loss: 0.1348 - acc: 0.9550 - val_loss:
0.4188 - val_acc: 0.8228
Epoch 10/10 - 2981/2981 - 68s 23ms/step - loss: 0.1230 - acc: 0.9577 - val_loss:
0.4382 - val_acc: 0.8362

LSTM

Dataset 1:

Deep learning for detecting integrity risks in text documents 70

Churer Schriften zur Informationswissenschaft – Schrift 103 Master Thesis Kalbermatter

Train on 2216 samples, validate on 554 samples
Epoch 1/10 - 2216/2216 - 240s 108ms/step - loss: 0.5546 - acc: 0.6997 - val_loss:
0.4669 - val_acc: 0.7518
Epoch 2/10 - 2216/2216 - 108s 49ms/step - loss: 0.3849 - acc: 0.8139 - val_loss:
0.2705 - val_acc: 0.8980
Epoch 3/10 - 2216/2216 - 99s 45ms/step - loss: 0.3434 - acc: 0.8606 - val_loss:
0.3644 - val_acc: 0.8556
Epoch 4/10 - 2216/2216 - 130s 59ms/step - loss: 0.2131 - acc: 0.9255 - val_loss:
0.2322 - val_acc: 0.9161
Epoch 5/10 - 2216/2216 - 51s 23ms/step - loss: 0.1794 - acc: 0.9341 - val_loss:
0.2056 - val_acc: 0.9215
Epoch 6/10 - 2216/2216 - 50s 23ms/step - loss: 0.1516 - acc: 0.9470 - val_loss:
0.2241 - val_acc: 0.9116
Epoch 7/10 - 2216/2216 - 52s 24ms/step - loss: 0.1393 - acc: 0.9574 - val_loss:
0.2045 - val_acc: 0.9233
Epoch 8/10 - 2216/2216 - 55s 25ms/step - loss: 0.1309 - acc: 0.9594 - val_loss:
0.1746 - val_acc: 0.9359
Epoch 9/10 - 2216/2216 - 54s 24ms/step - loss: 0.1262 - acc: 0.9571 - val_loss:
0.1968 - val_acc: 0.9260
Epoch 10/10 - 2216/2216 - 56s 25ms/step - loss: 0.1188 - acc: 0.9576 - val_loss:
0.1504 - val_acc: 0.9386

Dataset 2:
Train on 979 samples, validate on 244 samples
Epoch 1/10 - 979/979 - 28s 28ms/step - loss: 0.6708 - acc: 0.5756 - val_loss:
0.6438 - val_acc: 0.6189
Epoch 2/10 - 979/979 - 25s 26ms/step - loss: 0.6683 - acc: 0.6522 - val_loss:
0.6084 - val_acc: 0.7336
Epoch 3/10 - 979/979 - 25s 25ms/step - loss: 0.6368 - acc: 0.6333 - val_loss:
0.6436 - val_acc: 0.6783
Epoch 4/10 - 979/979 - 25s 25ms/step - loss: 0.6404 - acc: 0.6629 - val_loss:
0.6491 - val_acc: 0.6783
Epoch 5/10 - 979/979 - 25s 25ms/step - loss: 0.6298 - acc: 0.6619 - val_loss:
0.6344 - val_acc: 0.6701
Epoch 6/10 - 979/979 - 25s 25ms/step - loss: 0.6122 - acc: 0.6828 - val_loss:
0.6067 - val_acc: 0.6742
Epoch 7/10 - 979/979 - 25s 25ms/step - loss: 0.5994 - acc: 0.7099 - val_loss:
0.6451 - val_acc: 0.6516
Epoch 8/10 - 979/979 - 25s 25ms/step - loss: 0.5950 - acc: 0.7068 - val_loss:
0.6254 - val_acc: 0.6619
Epoch 9/10 - 979/979 - 25s 25ms/step - loss: 0.5718 - acc: 0.7211 - val_loss:
0.6118 - val_acc: 0.6762
Epoch 10/10 - 979/979 - 25s 25ms/step - loss: 0.5635 - acc: 0.7298 - val_loss:
0.6208 - val_acc: 0.6844

Dataset 3:
Train on 58620 samples, validate on 14655 samples
Epoch 1/10 - 58620/58620 - 1034s 18ms/step - loss: 0.5456 - acc: 0.7490 - val_loss:
0.5321 - val_acc: 0.7629
Epoch 2/10 - 58620/58620 - 931s 16ms/step - loss: 0.5129 - acc: 0.7682 - val_loss:
0.5186 - val_acc: 0.7662

Deep learning for detecting integrity risks in text documents 71

Churer Schriften zur Informationswissenschaft – Schrift 103 Master Thesis Kalbermatter

Epoch 3/10 - 58620/58620 - 929s 16ms/step - loss: 0.5021 - acc: 0.7764 - val_loss:
0.5132 - val_acc: 0.7727
Epoch 4/10 - 58620/58620 - 982s 17ms/step - loss: 0.4961 - acc: 0.7796 - val_loss:
0.5060 - val_acc: 0.7735
Epoch 5/10 - 58620/58620 - 805s 14ms/step - loss: 0.4930 - acc: 0.7810 - val_loss:
0.5058 - val_acc: 0.7756
Epoch 6/10 - 58620/58620 - 868s 15ms/step - loss: 0.4893 - acc: 0.7833 - val_loss:
0.5078 - val_acc: 0.7754
Epoch 7/10 - 58620/58620 - 715s 12ms/step - loss: 0.4872 - acc: 0.7845 - val_loss:
0.5060 - val_acc: 0.7778
Epoch 8/10 - 58620/58620 - 437s 7ms/step - loss: 0.4841 - acc: 0.7869 - val_loss:
0.5037 - val_acc: 0.7766
Epoch 9/10 - 58620/58620 - 558s 10ms/step - loss: 0.4813 - acc: 0.7882 - val_loss:
0.5053 - val_acc: 0.7758
Epoch 10/10 - 58620/58620 - 561s 10ms/step - loss: 0.4783 - acc: 0.7899 - val_loss:
0.5086 - val_acc: 0.7756

Double LSTM

Dataset 1:
Train on 2216 samples, validate on 554 samples
Epoch 1/10 - 2216/2216 - 108s 49ms/step - loss: 0.5414 - acc: 0.7067 - val_loss:
0.3529 - val_acc: 0.8736
Epoch 2/10 - 2216/2216 - 106s 48ms/step - loss: 0.2605 - acc: 0.9106 - val_loss:
0.1956 - val_acc: 0.9422
Epoch 3/10 - 2216/2216 - 110s 50ms/step - loss: 0.1995 - acc: 0.9343 - val_loss:
0.2188 - val_acc: 0.9278
Epoch 4/10 - 2216/2216 - 119s 54ms/step - loss: 0.2369 - acc: 0.9147 - val_loss:
0.2012 - val_acc: 0.9350
Epoch 5/10 - 2216/2216 - 119s 54ms/step - loss: 0.1578 - acc: 0.9499 - val_loss:
0.1797 - val_acc: 0.9440
Epoch 6/10 - 2216/2216 - 108s 49ms/step - loss: 0.1246 - acc: 0.9596 - val_loss:
0.1763 - val_acc: 0.9468
Epoch 7/10 - 2216/2216 - 109s 49ms/step - loss: 0.1495 - acc: 0.9495 - val_loss:
0.2221 - val_acc: 0.9314
Epoch 8/10 - 2216/2216 - 104s 47ms/step - loss: 0.1218 - acc: 0.9587 - val_loss:
0.1064 - val_acc: 0.9639
Epoch 9/10 - 2216/2216 - 105s 47ms/step - loss: 0.0889 - acc: 0.9707 - val_loss:
0.1082 - val_acc: 0.9639
Epoch 10/10 - 2216/2216 - 122s 55ms/step - loss: 0.0886 - acc: 0.9713 - val_loss:
0.1412 - val_acc: 0.9504

Dataset 2:
Train on 979 samples, validate on 244 samples
Epoch 1/10 - 979/979 - 82s 83ms/step - loss: 0.6699 - acc: 0.5822 - val_loss: 0.6461
- val_acc: 0.5943
Epoch 2/10 - 979/979 - 60s 61ms/step - loss: 0.6400 - acc: 0.6313 - val_loss: 0.6344
- val_acc: 0.6619
Epoch 3/10 - 979/979 - 58s 59ms/step - loss: 0.6239 - acc: 0.6604 - val_loss: 0.6034
- val_acc: 0.7111
Epoch 4/10 - 979/979 - 39s 39ms/step - loss: 0.5896 - acc: 0.6936 - val_loss: 0.6040
- val_acc: 0.6947

Deep learning for detecting integrity risks in text documents 72

Churer Schriften zur Informationswissenschaft – Schrift 103 Master Thesis Kalbermatter

Epoch 5/10 - 979/979 - 29s 29ms/step - loss: 0.5873 - acc: 0.7074 - val_loss: 0.6190
- val_acc: 0.6885
Epoch 6/10 - 979/979 - 29s 29ms/step - loss: 0.5766 - acc: 0.7308 - val_loss: 0.6158
- val_acc: 0.6803
Epoch 7/10 - 979/979 - 28s 28ms/step - loss: 0.5567 - acc: 0.7436 - val_loss: 0.5940
- val_acc: 0.6803
Epoch 8/10 - 979/979 - 28s 28ms/step - loss: 0.5198 - acc: 0.7564 - val_loss: 0.5959
- val_acc: 0.6742
Epoch 9/10 - 979/979 - 28s 28ms/step - loss: 0.4839 - acc: 0.7988 - val_loss: 0.6467
- val_acc: 0.6762
Epoch 10/10 - 979/979 - 28s 29ms/step - loss: 0.5070 - acc: 0.7656 - val_loss:
0.6006 - val_acc: 0.6906

Dataset 3:
Train on 2594 samples, validate on 648 samples
Epoch 1/10 - 2594/2594 - 88s 34ms/step - loss: 0.5977 - acc: 0.6654 - val_loss:
0.4900 - val_acc: 0.7593
Epoch 2/10 - 2594/2594 - 86s 33ms/step - loss: 0.4497 - acc: 0.7868 - val_loss:
0.4033 - val_acc: 0.7901
Epoch 3/10 - 2594/2594 - 86s 33ms/step - loss: 0.4423 - acc: 0.7733 - val_loss:
0.3861 - val_acc: 0.8110
Epoch 4/10 - 2594/2594 - 86s 33ms/step - loss: 0.3888 - acc: 0.8071 - val_loss:
0.3649 - val_acc: 0.8272
Epoch 5/10 - 2594/2594 - 86s 33ms/step - loss: 0.4053 - acc: 0.8045 - val_loss:
0.3917 - val_acc: 0.8287
Epoch 6/10 - 2594/2594 - 83s 32ms/step - loss: 0.3604 - acc: 0.8263 - val_loss:
0.3511 - val_acc: 0.8434
Epoch 7/10 - 2594/2594 - 79s 30ms/step - loss: 0.3428 - acc: 0.8387 - val_loss:
0.4478 - val_acc: 0.7647
Epoch 8/10 - 2594/2594 - 76s 29ms/step - loss: 0.3817 - acc: 0.8279 - val_loss:
0.3593 - val_acc: 0.8372
Epoch 9/10 - 2594/2594 - 76s 29ms/step - loss: 0.3285 - acc: 0.8504 - val_loss:
0.4564 - val_acc: 0.7870
Epoch 10/10 - 2594/2594 - 75s 29ms/step - loss: 0.3968 - acc: 0.8196 - val_loss:
0.4100 - val_acc: 0.8079

LSTM + Dropout

Dataset 1:
Train on 2216 samples, validate on 554 samples
Epoch 1/10 - 2216/2216 - 56s 25ms/step - loss: 0.5798 - acc: 0.6656 - val_loss:
0.4566 - val_acc: 0.7690
Epoch 2/10 - 2216/2216 - 54s 24ms/step - loss: 0.4213 - acc: 0.7902 - val_loss:
0.4247 - val_acc: 0.7879
Epoch 3/10 - 2216/2216 - 53s 24ms/step - loss: 0.2891 - acc: 0.8777 - val_loss:
0.3307 - val_acc: 0.8899
Epoch 4/10 - 2216/2216 - 53s 24ms/step - loss: 0.3475 - acc: 0.8667 - val_loss:
0.2622 - val_acc: 0.9269
Epoch 5/10 - 2216/2216 - 53s 24ms/step - loss: 0.1965 - acc: 0.9357 - val_loss:
0.1783 - val_acc: 0.9350
Epoch 6/10 - 2216/2216 - 53s 24ms/step - loss: 0.1828 - acc: 0.9350 - val_loss:
0.2243 - val_acc: 0.9242

Deep learning for detecting integrity risks in text documents 73

Churer Schriften zur Informationswissenschaft – Schrift 103 Master Thesis Kalbermatter

Epoch 7/10 - 2216/2216 - 53s 24ms/step - loss: 0.1884 - acc: 0.9339 - val_loss:
0.1640 - val_acc: 0.9531
Epoch 8/10 - 2216/2216 - 54s 24ms/step - loss: 0.1463 - acc: 0.9540 - val_loss:
0.1561 - val_acc: 0.9531
Epoch 9/10 - 2216/2216 - 53s 24ms/step - loss: 0.1281 - acc: 0.9569 - val_loss:
0.1311 - val_acc: 0.9540
Epoch 10/10 - 2216/2216 - 53s 24ms/step - loss: 0.4493 - acc: 0.8421 - val_loss:
0.4513 - val_acc: 0.7572

Dataset 2:
Train on 979 samples, validate on 244 samples
Epoch 1/10 - 979/979 - 28s 28ms/step - loss: 0.6756 - acc: 0.5802 - val_loss: 0.6729
- val_acc: 0.5861
Epoch 2/10 - 979/979 - 25s 26ms/step - loss: 0.6517 - acc: 0.5981 - val_loss:
0.6595 - val_acc: 0.6107
Epoch 3/10 - 979/979 - 26s 27ms/step - loss: 0.6284 - acc: 0.6573 - val_loss:
0.6285 - val_acc: 0.6639
Epoch 4/10 - 979/979 - 25s 25ms/step - loss: 0.6088 - acc: 0.6813 - val_loss:
0.6118 - val_acc: 0.6926
Epoch 5/10 - 979/979 - 25s 25ms/step - loss: 0.5918 - acc: 0.7033 - val_loss:
0.6270 - val_acc: 0.6906
Epoch 6/10 - 979/979 - 25s 25ms/step - loss: 0.5877 - acc: 0.6900 - val_loss:
0.6431 - val_acc: 0.6742
Epoch 7/10 - 979/979 - 25s 25ms/step - loss: 0.5947 - acc: 0.7120 - val_loss:
0.6337 - val_acc: 0.6906
Epoch 8/10 - 979/979 - 25s 26ms/step - loss: 0.5630 - acc: 0.7344 - val_loss:
0.5890 - val_acc: 0.6967
Epoch 9/10 - 979/979 - 25s 25ms/step - loss: 0.5486 - acc: 0.7400 - val_loss:
0.5913 - val_acc: 0.7008
Epoch 10/10 - 979/979 - 25s 25ms/step - loss: 0.5495 - acc: 0.7406 - val_loss:
0.6056 - val_acc: 0.6906

Dataset 3:
Train on 2594 samples, validate on 648 samples
Epoch 1/10 - 2594/2594 - 49s 19ms/step - loss: 0.5809 - acc: 0.6795 - val_loss:
0.4591 - val_acc: 0.7639
Epoch 2/10 - 2594/2594 - 49s 19ms/step - loss: 0.4518 - acc: 0.7733 - val_loss:
0.4096 - val_acc: 0.7832
Epoch 3/10 - 2594/2594 - 47s 18ms/step - loss: 0.4722 - acc: 0.7546 - val_loss:
0.4465 - val_acc: 0.7677
Epoch 4/10 - 2594/2594 - 48s 19ms/step - loss: 0.4087 - acc: 0.8045 - val_loss:
0.3962 - val_acc: 0.8063
Epoch 5/10 - 2594/2594 - 69s 27ms/step - loss: 0.4131 - acc: 0.8059 - val_loss:
0.3795 - val_acc: 0.8094
Epoch 6/10 - 2594/2594 - 105s 40ms/step - loss: 0.3821 - acc: 0.8169 - val_loss:
0.3946 - val_acc: 0.8017
Epoch 7/10 - 2594/2594 - 135s 52ms/step - loss: 0.3621 - acc: 0.8304 - val_loss:
0.3920 - val_acc: 0.8171
Epoch 8/10 - 2594/2594 - 165s 63ms/step - loss: 0.3526 - acc: 0.8423 - val_loss:
0.3767 - val_acc: 0.8110

Deep learning for detecting integrity risks in text documents 74

Churer Schriften zur Informationswissenschaft – Schrift 103 Master Thesis Kalbermatter

Epoch 9/10 - 2594/2594 - 156s 60ms/step - loss: 0.3416 - acc: 0.8464 - val_loss:
0.4069 - val_acc: 0.8117
Epoch 10/10 - 2594/2594 - 155s 60ms/step - loss: 0.3626 - acc: 0.8263 - val_loss:
0.3882 - val_acc: 0.8025

GRU

Dataset 1:
Train on 2216 samples, validate on 554 samples
Epoch 1/10 - 2216/2216 - 60s 27ms/step - loss: 0.5757 - acc: 0.6611 - val_loss:
0.4653 - val_acc: 0.7735
Epoch 2/10 - 2216/2216 - 60s 27ms/step - loss: 0.4307 - acc: 0.7868 - val_loss:
0.3815 - val_acc: 0.8384
Epoch 3/10 - 2216/2216 - 70s 32ms/step - loss: 0.4546 - acc: 0.8166 - val_loss:
0.4102 - val_acc: 0.8014
Epoch 4/10 - 2216/2216 - 68s 31ms/step - loss: 0.4000 - acc: 0.8116 - val_loss:
0.3820 - val_acc: 0.8159
Epoch 5/10 - 2216/2216 - 67s 30ms/step - loss: 0.3139 - acc: 0.8601 - val_loss:
0.2391 - val_acc: 0.9233
Epoch 6/10 - 2216/2216 - 65s 29ms/step - loss: 0.4637 - acc: 0.8060 - val_loss:
0.4084 - val_acc: 0.7969
Epoch 7/10 - 2216/2216 - 66s 30ms/step - loss: 0.3021 - acc: 0.8770 - val_loss:
0.2377 - val_acc: 0.9170
Epoch 8/10 - 2216/2216 - 72s 32ms/step - loss: 0.2163 - acc: 0.9240 - val_loss:
0.2586 - val_acc: 0.8962
Epoch 9/10 - 2216/2216 - 68s 31ms/step - loss: 0.1992 - acc: 0.9301 - val_loss:
0.3247 - val_acc: 0.8782
Epoch 10/10 - 2216/2216 - 66s 30ms/step - loss: 0.1929 - acc: 0.9323 - val_loss:
0.2203 - val_acc: 0.9215

Dataset 2:
Train on 979 samples, validate on 244 samples
Epoch 1/10 - 979/979 - 30s 30ms/step - loss: 0.6753 - acc: 0.5822 - val_loss: 0.6565
- val_acc: 0.5902
Epoch 2/10 - 979/979 - 26s 27ms/step - loss: 0.6529 - acc: 0.6083 - val_loss: 0.6458
- val_acc: 0.6148
Epoch 3/10 - 979/979 - 27s 27ms/step - loss: 0.6397 - acc: 0.6236 - val_loss: 0.6509
- val_acc: 0.6414
Epoch 4/10 - 979/979 - 28s 29ms/step - loss: 0.6212 - acc: 0.6517 - val_loss: 0.6299
- val_acc: 0.6557
Epoch 5/10 - 979/979 - 25s 26ms/step - loss: 0.6036 - acc: 0.6844 - val_loss: 0.6260
- val_acc: 0.6639
Epoch 6/10 - 979/979 - 25s 26ms/step - loss: 0.5836 - acc: 0.6900 - val_loss: 0.6180
- val_acc: 0.6865
Epoch 7/10 - 979/979 - 25s 26ms/step - loss: 0.5789 - acc: 0.6685 - val_loss: 0.6406
- val_acc: 0.6537
Epoch 8/10 - 979/979 - 25s 26ms/step - loss: 0.5672 - acc: 0.7058 - val_loss: 0.6218
- val_acc: 0.6824
Epoch 9/10 - 979/979 - 26s 26ms/step - loss: 0.5305 - acc: 0.7523 - val_loss: 0.6387
- val_acc: 0.6537

Deep learning for detecting integrity risks in text documents 75

Churer Schriften zur Informationswissenschaft – Schrift 103 Master Thesis Kalbermatter

Epoch 10/10 - 979/979 - 25s 26ms/step - loss: 0.5049 - acc: 0.7600 - val_loss:
0.7123 - val_acc: 0.6619

Dataset 3:
Train on 2594 samples, validate on 648 samples
Epoch 1/10 - 2594/2594 - 60s 23ms/step - loss: 0.5779 - acc: 0.6581 - val_loss:
0.5306 - val_acc: 0.6952
Epoch 2/10 - 2594/2594 - 57s 22ms/step - loss: 0.4566 - acc: 0.7614 - val_loss:
0.4639 - val_acc: 0.7793
Epoch 3/10 - 2594/2594 - 57s 22ms/step - loss: 0.4106 - acc: 0.8013 - val_loss:
0.4706 - val_acc: 0.7446
Epoch 4/10 - 2594/2594 - 59s 23ms/step - loss: 0.4057 - acc: 0.8076 - val_loss:
0.5082 - val_acc: 0.7153
Epoch 5/10 - 2594/2594 - 57s 22ms/step - loss: 0.3896 - acc: 0.8117 - val_loss:
0.6564 - val_acc: 0.7554
Epoch 6/10 - 2594/2594 - 58s 22ms/step - loss: 0.3924 - acc: 0.8138 - val_loss:
0.4359 - val_acc: 0.8002
Epoch 7/10 - 2594/2594 - 57s 22ms/step - loss: 0.3532 - acc: 0.8371 - val_loss:
0.4176 - val_acc: 0.8040
Epoch 8/10 - 2594/2594 - 56s 22ms/step - loss: 0.3344 - acc: 0.8479 - val_loss:
0.4726 - val_acc: 0.8063
Epoch 9/10 - 2594/2594 - 58s 22ms/step - loss: 0.3169 - acc: 0.8574 - val_loss:
0.4169 - val_acc: 0.7924
Epoch 10/10 - 2594/2594 - 57s 22ms/step - loss: 0.3077 - acc: 0.8568 - val_loss:
0.4107 - val_acc: 0.7955

Double GRU

Dataset 1:
Train on 2216 samples, validate on 554 samples
Epoch 1/10 - 2216/2216 - 148s 67ms/step - loss: 0.5566 - acc: 0.6983 - val_loss:
0.4373 - val_acc: 0.7816
Epoch 2/10 - 2216/2216 - 135s 61ms/step - loss: 0.4059 - acc: 0.8105 - val_loss:
0.3566 - val_acc: 0.8186
Epoch 3/10 - 2216/2216 - 139s 63ms/step - loss: 0.2607 - acc: 0.8879 - val_loss:
0.3159 - val_acc: 0.8899
Epoch 4/10 - 2216/2216 - 136s 62ms/step - loss: 0.3108 - acc: 0.8791 - val_loss:
0.2079 - val_acc: 0.9350
Epoch 5/10 - 2216/2216 - 90s 40ms/step - loss: 0.1621 - acc: 0.9429 - val_loss:
0.2016 - val_acc: 0.9206
Epoch 6/10 - 2216/2216 - 63s 28ms/step - loss: 0.1468 - acc: 0.9533 - val_loss:
0.1898 - val_acc: 0.9386
Epoch 7/10 - 2216/2216 - 93s 42ms/step - loss: 0.1122 - acc: 0.9605 - val_loss:
0.1792 - val_acc: 0.9350
Epoch 8/10 - 2216/2216 - 102s 46ms/step - loss: 0.1056 - acc: 0.9585 - val_loss:
0.2645 - val_acc: 0.9070
Epoch 9/10 - 2216/2216 - 99s 45ms/step - loss: 0.0946 - acc: 0.9625 - val_loss:
0.1451 - val_acc: 0.9495
Epoch 10/10 - 2216/2216 - 112s 50ms/step - loss: 0.0738 - acc: 0.9707 - val_loss:
0.1333 - val_acc: 0.9513

Dataset 2:

Deep learning for detecting integrity risks in text documents 76

Churer Schriften zur Informationswissenschaft – Schrift 103 Master Thesis Kalbermatter

Train on 979 samples, validate on 244 samples
Epoch 1/10 - 979/979 - 28s 28ms/step - loss: 0.6741 - acc: 0.5695 - val_loss: 0.6400
- val_acc: 0.6168
Epoch 2/10 - 979/979 - 25s 25ms/step - loss: 0.6456 - acc: 0.6256 - val_loss: 0.6344
- val_acc: 0.6250
Epoch 3/10 - 979/979 - 25s 25ms/step - loss: 0.6281 - acc: 0.6404 - val_loss: 0.6610
- val_acc: 0.6270
Epoch 4/10 - 979/979 - 25s 25ms/step - loss: 0.6057 - acc: 0.6619 - val_loss: 0.6450
- val_acc: 0.6537
Epoch 5/10 - 979/979 - 25s 25ms/step - loss: 0.5716 - acc: 0.7028 - val_loss: 0.6592
- val_acc: 0.6537
Epoch 6/10 - 979/979 - 25s 25ms/step - loss: 0.5555 - acc: 0.7079 - val_loss: 0.6752
- val_acc: 0.6332
Epoch 7/10 - 979/979 - 25s 25ms/step - loss: 0.5042 - acc: 0.7625 - val_loss: 0.7287
- val_acc: 0.5840
Epoch 8/10 - 979/979 - 25s 25ms/step - loss: 0.4681 - acc: 0.7993 - val_loss: 0.8457
- val_acc: 0.5861
Epoch 9/10 - 979/979 - 25s 25ms/step - loss: 0.4193 - acc: 0.8136 - val_loss: 0.8739
- val_acc: 0.5410
Epoch 10/10 - 979/979 - 25s 25ms/step - loss: 0.3667 - acc: 0.8504 - val_loss:
0.9597 - val_acc: 0.6004

Dataset 3:
Train on 2594 samples, validate on 648 samples
Epoch 1/10 - 2594/2594 - 102s 39ms/step - loss: 0.5832 - acc: 0.6598 - val_loss:
0.4851 - val_acc: 0.7546
Epoch 2/10 - 2594/2594 - 98s 38ms/step - loss: 0.4705 - acc: 0.7537 - val_loss:
0.4287 - val_acc: 0.7878
Epoch 3/10 - 2594/2594 - 98s 38ms/step - loss: 0.4047 - acc: 0.7978 - val_loss:
0.3416 - val_acc: 0.8295
Epoch 4/10 - 2594/2594 - 97s 37ms/step - loss: 0.3899 - acc: 0.8184 - val_loss:
0.3606 - val_acc: 0.8210
Epoch 5/10 - 2594/2594 - 97s 37ms/step - loss: 0.3549 - acc: 0.8364 - val_loss:
0.3969 - val_acc: 0.7963
Epoch 6/10 - 2594/2594 - 97s 38ms/step - loss: 0.3502 - acc: 0.8410 - val_loss:
0.3771 - val_acc: 0.8133
Epoch 7/10 - 2594/2594 - 97s 38ms/step - loss: 0.3209 - acc: 0.8583 - val_loss:
0.3864 - val_acc: 0.8063
Epoch 8/10 - 2594/2594 - 98s 38ms/step - loss: 0.3126 - acc: 0.8614 - val_loss:
0.3515 - val_acc: 0.8372
Epoch 9/10 - 2594/2594 - 97s 38ms/step - loss: 0.2803 - acc: 0.8741 - val_loss:
0.3940 - val_acc: 0.8094
Epoch 10/10 - 2594/2594 - 97s 37ms/step - loss: 0.2573 - acc: 0.8851 - val_loss:
0.3913 - val_acc: 0.8218

GRU + Dropout

Dataset 1:
Train on 2216 samples, validate on 554 samples
Epoch 1/10 - 2216/2216 - 54s 24ms/step - loss: 0.5697 - acc: 0.6832 - val_loss:
0.4561 - val_acc: 0.7762

Deep learning for detecting integrity risks in text documents 77

Churer Schriften zur Informationswissenschaft – Schrift 103 Master Thesis Kalbermatter

Epoch 2/10 - 2216/2216 - 53s 24ms/step - loss: 0.4120 - acc: 0.8089 - val_loss:
0.3012 - val_acc: 0.8899
Epoch 3/10 - 2216/2216 - 49s 22ms/step - loss: 0.2985 - acc: 0.8883 - val_loss:
0.4100 - val_acc: 0.8159
Epoch 4/10 - 2216/2216 - 49s 22ms/step - loss: 0.2612 - acc: 0.9066 - val_loss:
0.2736 - val_acc: 0.9034
Epoch 5/10 - 2216/2216 - 48s 22ms/step - loss: 0.2112 - acc: 0.9285 - val_loss:
0.3041 - val_acc: 0.9007
Epoch 6/10 - 2216/2216 - 51s 23ms/step - loss: 0.2609 - acc: 0.9075 - val_loss:
0.2511 - val_acc: 0.9025
Epoch 7/10 - 2216/2216 - 55s 25ms/step - loss: 0.2031 - acc: 0.9296 - val_loss:
0.2510 - val_acc: 0.9061
Epoch 8/10 - 2216/2216 - 48s 22ms/step - loss: 0.1821 - acc: 0.9341 - val_loss:
0.3400 - val_acc: 0.8556
Epoch 9/10 - 2216/2216 - 37s 17ms/step - loss: 0.2255 - acc: 0.9264 - val_loss:
0.2284 - val_acc: 0.9224
Epoch 10/10 - 2216/2216 - 62s 28ms/step - loss: 0.1606 - acc: 0.9488 - val_loss:
0.1929 - val_acc: 0.9305

Dataset 2:
Train on 979 samples, validate on 244 samples
Epoch 1/10 - 979/979 - 30s 31ms/step - loss: 0.6769 - acc: 0.5659 - val_loss: 0.6524
- val_acc: 0.6352
Epoch 2/10 - 979/979 - 26s 27ms/step - loss: 0.6484 - acc: 0.6078 - val_loss: 0.6566
- val_acc: 0.6311
Epoch 3/10 - 979/979 - 26s 27ms/step - loss: 0.6294 - acc: 0.6445 - val_loss: 0.6582
- val_acc: 0.6352
Epoch 4/10 - 979/979 - 26s 27ms/step - loss: 0.5966 - acc: 0.7012 - val_loss: 0.6522
- val_acc: 0.6537
Epoch 5/10 - 979/979 - 26s 26ms/step - loss: 0.5882 - acc: 0.6803 - val_loss: 0.6739
- val_acc: 0.6168
Epoch 6/10 - 979/979 - 26s 26ms/step - loss: 0.5949 - acc: 0.6731 - val_loss: 0.6306
- val_acc: 0.6660
Epoch 7/10 - 979/979 - 26s 27ms/step - loss: 0.5606 - acc: 0.7472 - val_loss: 0.6343
- val_acc: 0.6578
Epoch 8/10 - 979/979 - 26s 26ms/step - loss: 0.5494 - acc: 0.7482 - val_loss: 0.6467
- val_acc: 0.6824
Epoch 9/10 - 979/979 - 26s 26ms/step - loss: 0.5293 - acc: 0.7564 - val_loss: 0.6350
- val_acc: 0.6742
Epoch 10/10 - 979/979 - 26s 27ms/step - loss: 0.5161 - acc: 0.7559 - val_loss:
0.6395 - val_acc: 0.6844

Dataset 3:
Train on 2216 samples, validate on 554 samples
Epoch 1/10 - 2216/2216 - 54s 24ms/step - loss: 0.5697 - acc: 0.6832 - val_loss:
0.4561 - val_acc: 0.7762
Epoch 2/10 - 2216/2216 - 53s 24ms/step - loss: 0.4120 - acc: 0.8089 - val_loss:
0.3012 - val_acc: 0.8899
Epoch 3/10 - 2216/2216 - 49s 22ms/step - loss: 0.2985 - acc: 0.8883 - val_loss:
0.4100 - val_acc: 0.8159

Deep learning for detecting integrity risks in text documents 78

Churer Schriften zur Informationswissenschaft – Schrift 103 Master Thesis Kalbermatter

Epoch 4/10 - 2216/2216 - 49s 22ms/step - loss: 0.2612 - acc: 0.9066 - val_loss:
0.2736 - val_acc: 0.9034
Epoch 5/10 - 2216/2216 - 48s 22ms/step - loss: 0.2112 - acc: 0.9285 - val_loss:
0.3041 - val_acc: 0.9007
Epoch 6/10 - 2216/2216 - 51s 23ms/step - loss: 0.2609 - acc: 0.9075 - val_loss:
0.2511 - val_acc: 0.9025
Epoch 7/10 - 2216/2216 - 55s 25ms/step - loss: 0.2031 - acc: 0.9296 - val_loss:
0.2510 - val_acc: 0.9061
Epoch 8/10 - 2216/2216 - 48s 22ms/step - loss: 0.1821 - acc: 0.9341 - val_loss:
0.3400 - val_acc: 0.8556
Epoch 9/10 - 2216/2216 - 37s 17ms/step - loss: 0.2255 - acc: 0.9264 - val_loss:
0.2284 - val_acc: 0.9224
Epoch 10/10 - 2216/2216 - 62s 28ms/step - loss: 0.1606 - acc: 0.9488 - val_loss:
0.1929 - val_acc: 0.9305

LSTM Bidirectional

Dataset 1:
Train on 2216 samples, validate on 554 samples
Epoch 1/10 - 2216/2216 - 48s 22ms/step - loss: 0.6151 - acc: 0.6264 - val_loss:
0.4690 - val_acc: 0.8060
Epoch 2/10 - 2216/2216 - 47s 21ms/step - loss: 0.3433 - acc: 0.8633 - val_loss:
0.2370 - val_acc: 0.9206
Epoch 3/10 - 2216/2216 - 47s 21ms/step - loss: 0.3179 - acc: 0.8766 - val_loss:
0.3443 - val_acc: 0.8529
Epoch 4/10 - 2216/2216 - 46s 21ms/step - loss: 0.2662 - acc: 0.8962 - val_loss:
0.3123 - val_acc: 0.8628
Epoch 5/10 - 2216/2216 - 47s 21ms/step - loss: 0.1761 - acc: 0.9413 - val_loss:
0.1956 - val_acc: 0.9332
Epoch 6/10 - 2216/2216 - 89s 40ms/step - loss: 0.3663 - acc: 0.8355 - val_loss:
0.3608 - val_acc: 0.8727
Epoch 7/10 - 2216/2216 - 116s 52ms/step - loss: 0.2910 - acc: 0.9084 - val_loss:
0.2417 - val_acc: 0.9269
Epoch 8/10 - 2216/2216 - 124s 56ms/step - loss: 0.2058 - acc: 0.9319 - val_loss:
0.3107 - val_acc: 0.8827
Epoch 9/10 - 2216/2216 - 106s 48ms/step - loss: 0.1946 - acc: 0.9380 - val_loss:
0.2584 - val_acc: 0.9070
Epoch 10/10 - 2216/2216 - 106s 48ms/step - loss: 0.1943 - acc: 0.9330 - val_loss:
0.2132 - val_acc: 0.9224

Dataset 2:
Train on 979 samples, validate on 244 samples
Epoch 1/10 - 979/979 - 23s 23ms/step - loss: 0.6731 - acc: 0.5689 - val_loss: 0.6678
- val_acc: 0.6025
Epoch 2/10 - 979/979 - 23s 23ms/step - loss: 0.6500 - acc: 0.5889 - val_loss: 0.6486
- val_acc: 0.5984
Epoch 3/10 - 979/979 - 22s 22ms/step - loss: 0.6311 - acc: 0.6287 - val_loss: 0.6357
- val_acc: 0.6578
Epoch 4/10 - 979/979 - 24s 24ms/step - loss: 0.6323 - acc: 0.6394 - val_loss: 0.6436
- val_acc: 0.6230
Epoch 5/10 - 979/979 - 24s 24ms/step - loss: 0.6158 - acc: 0.6680 - val_loss: 0.6399
- val_acc: 0.6721

Deep learning for detecting integrity risks in text documents 79

Churer Schriften zur Informationswissenschaft – Schrift 103 Master Thesis Kalbermatter

Epoch 6/10 - 979/979 - 23s 23ms/step - loss: 0.6026 - acc: 0.6716 - val_loss: 0.6369
- val_acc: 0.6926
Epoch 7/10 - 979/979 - 20s 20ms/step - loss: 0.5711 - acc: 0.7155 - val_loss: 0.6101
- val_acc: 0.6598
Epoch 8/10 - 979/979 - 20s 20ms/step - loss: 0.5673 - acc: 0.7109 - val_loss: 0.6289
- val_acc: 0.6947
Epoch 9/10 - 979/979 - 20s 20ms/step - loss: 0.5748 - acc: 0.6966 - val_loss: 0.6299
- val_acc: 0.6803
Epoch 10/10 - 979/979 - 20s 20ms/step - loss: 0.5468 - acc: 0.7508 - val_loss:
0.6072 - val_acc: 0.7234

Dataset 3:
Train on 2594 samples, validate on 648 samples
Epoch 1/10 - 2594/2594 - 74s 29ms/step - loss: 0.6162 - acc: 0.6332 - val_loss:
0.4812 - val_acc: 0.7685
Epoch 2/10 - 2594/2594 - 69s 27ms/step - loss: 0.4705 - acc: 0.7741 - val_loss:
0.4253 - val_acc: 0.8156
Epoch 3/10 - 2594/2594 - 69s 27ms/step - loss: 0.5116 - acc: 0.7456 - val_loss:
0.4651 - val_acc: 0.7716
Epoch 4/10 - 2594/2594 - 70s 27ms/step - loss: 0.4536 - acc: 0.7724 - val_loss:
0.4034 - val_acc: 0.8194
Epoch 5/10 - 2594/2594 - 70s 27ms/step - loss: 0.4711 - acc: 0.7274 - val_loss:
0.4943 - val_acc: 0.7454
Epoch 6/10 - 2594/2594 - 70s 27ms/step - loss: 0.4882 - acc: 0.7440 - val_loss:
0.4616 - val_acc: 0.7639
Epoch 7/10 - 2594/2594 - 70s 27ms/step - loss: 0.4668 - acc: 0.7513 - val_loss:
0.4414 - val_acc: 0.7870
Epoch 8/10 - 2594/2594 - 70s 27ms/step - loss: 0.4202 - acc: 0.7901 - val_loss:
0.4122 - val_acc: 0.8225
Epoch 9/10 - 2594/2594 - 70s 27ms/step - loss: 0.4268 - acc: 0.7984 - val_loss:
0.4097 - val_acc: 0.8079
Epoch 10/10 - 2594/2594 - 70s 27ms/step - loss: 0.3903 - acc: 0.8146 - val_loss:
0.3964 - val_acc: 0.8171

LSTM Bidirectional + Dropout

Dataset 1:
Train on 2216 samples, validate on 554 samples
Epoch 1/10 - 2216/2216 - 79s 36ms/step - loss: 0.6361 - acc: 0.6094 - val_loss:
0.5212 - val_acc: 0.7924
Epoch 2/10 - 2216/2216 - 55s 25ms/step - loss: 0.4363 - acc: 0.7994 - val_loss:
0.3462 - val_acc: 0.8403
Epoch 3/10 - 2216/2216 - 55s 25ms/step - loss: 0.2954 - acc: 0.8858 - val_loss:
0.4498 - val_acc: 0.8014
Epoch 4/10 - 2216/2216 - 83s 37ms/step - loss: 0.2545 - acc: 0.9104 - val_loss:
0.2354 - val_acc: 0.9106
Epoch 5/10 - 2216/2216 - 90s 41ms/step - loss: 0.1808 - acc: 0.9355 - val_loss:
0.1621 - val_acc: 0.9422
Epoch 6/10 - 2216/2216 - 88s 40ms/step - loss: 0.1670 - acc: 0.9438 - val_loss:
0.2523 - val_acc: 0.9116
Epoch 7/10 - 2216/2216 - 89s 40ms/step - loss: 0.1621 - acc: 0.9454 - val_loss:
0.1655 - val_acc: 0.9449

Deep learning for detecting integrity risks in text documents 80

Churer Schriften zur Informationswissenschaft – Schrift 103 Master Thesis Kalbermatter

Epoch 8/10 - 2216/2216 - 94s 42ms/step - loss: 0.2086 - acc: 0.9276 - val_loss:
0.1940 - val_acc: 0.9422
Epoch 9/10 - 2216/2216 - 92s 41ms/step - loss: 0.1855 - acc: 0.9404 - val_loss:
0.1577 - val_acc: 0.9495
Epoch 10/10 - 2216/2216 - 103s 47ms/step - loss: 0.1487 - acc: 0.9497 - val_loss:
0.1340 - val_acc: 0.9522

Dataset 2:
Train on 979 samples, validate on 244 samples
Epoch 1/10 - 979/979 - 48s 49ms/step - loss: 0.6706 - acc: 0.5832 - val_loss: 0.6766
- val_acc: 0.5779
Epoch 2/10 - 979/979 - 40s 41ms/step - loss: 0.6425 - acc: 0.6021 - val_loss: 0.6677
- val_acc: 0.5779
Epoch 3/10 - 979/979 - 40s 41ms/step - loss: 0.6941 - acc: 0.6384 - val_loss: 0.6910
- val_acc: 0.5779
Epoch 4/10 - 979/979 - 40s 41ms/step - loss: 0.6413 - acc: 0.6272 - val_loss: 0.6634
- val_acc: 0.6414
Epoch 5/10 - 979/979 - 38s 39ms/step - loss: 0.6222 - acc: 0.6762 - val_loss: 0.6999
- val_acc: 0.5779
Epoch 6/10 - 979/979 - 35s 36ms/step - loss: 0.6498 - acc: 0.6037 - val_loss: 0.6628
- val_acc: 0.6455
Epoch 7/10 - 979/979 - 35s 36ms/step - loss: 0.6059 - acc: 0.7048 - val_loss: 0.6471
- val_acc: 0.6660
Epoch 8/10 - 979/979 - 35s 36ms/step - loss: 0.5987 - acc: 0.6788 - val_loss: 0.7114
- val_acc: 0.5861
Epoch 9/10 - 979/979 - 35s 36ms/step - loss: 0.6124 - acc: 0.6624 - val_loss: 0.6651
- val_acc: 0.6025
Epoch 10/10 - 979/979 - 35s 36ms/step - loss: 0.5941 - acc: 0.7125 - val_loss:
0.6669 - val_acc: 0.6393

Dataset 3:
Train on 2594 samples, validate on 648 samples
Epoch 1/10 - 2594/2594 - 116s 45ms/step - loss: 0.6239 - acc: 0.6239 - val_loss:
0.5130 - val_acc: 0.7392
Epoch 2/10 - 2594/2594 - 105s 40ms/step - loss: 0.4985 - acc: 0.7373 - val_loss:
0.4759 - val_acc: 0.7546
Epoch 3/10 - 2594/2594 - 105s 40ms/step - loss: 0.4357 - acc: 0.7758 - val_loss:
0.4396 - val_acc: 0.7739
Epoch 4/10 - 2594/2594 - 105s 40ms/step - loss: 0.4306 - acc: 0.8005 - val_loss:
0.9335 - val_acc: 0.6289
Epoch 5/10 - 2594/2594 - 105s 40ms/step - loss: 0.5702 - acc: 0.6939 - val_loss:
0.5154 - val_acc: 0.7215
Epoch 6/10 - 2594/2594 - 108s 42ms/step - loss: 0.4834 - acc: 0.7513 - val_loss:
0.4871 - val_acc: 0.7446
Epoch 7/10 - 2594/2594 - 109s 42ms/step - loss: 0.4443 - acc: 0.7824 - val_loss:
0.5192 - val_acc: 0.7400
Epoch 8/10 - 2594/2594 - 110s 42ms/step - loss: 0.4394 - acc: 0.7839 - val_loss:
0.4273 - val_acc: 0.8009
Epoch 9/10 - 2594/2594 - 114s 44ms/step - loss: 0.3951 - acc: 0.8082 - val_loss:
0.4474 - val_acc: 0.7716

Deep learning for detecting integrity risks in text documents 81

Churer Schriften zur Informationswissenschaft – Schrift 103 Master Thesis Kalbermatter

Epoch 10/10 - 2594/2594 - 109s 42ms/step - loss: 0.3902 - acc: 0.8150 - val_loss:
0.4276 - val_acc: 0.7971

Appendix C Training Results for Additional Word Embedding Models

Various Custom Word Embedding Sizes

Top 500 Words:

Without stopwords:
Train on 58620 samples, validate on 14655 samples
Epoch 1/4 - 58620/58620 - 102s 2ms/step - loss: 0.5257 - acc: 0.7625 - val_loss:
0.5080 - val_acc: 0.7743
Epoch 2/4 - 58620/58620 - 99s 2ms/step - loss: 0.5018 - acc: 0.7756 - val_loss:
0.5016 - val_acc: 0.7750
Epoch 3/4 - 58620/58620 - 99s 2ms/step - loss: 0.4947 - acc: 0.7791 - val_loss:
0.4970 - val_acc: 0.7788
Epoch 4/4 - 58620/58620 - 100s 2ms/step - loss: 0.4895 - acc: 0.7824 - val_loss:
0.4963 - val_acc: 0.7797
14655/14655 - 6s 391us/step
Test score: 0.4962786031985437
Test accuracy: 0.7797338792302428

With stopwords:
Train on 58620 samples, validate on 14655 samples
Epoch 1/4
58620/58620 - 262s 4ms/step - loss: 0.5212 - acc: 0.7652 - val_loss: 0.5238 -
val_acc: 0.7701
Epoch 2/4
58620/58620 - 320s 5ms/step - loss: 0.4965 - acc: 0.7793 - val_loss: 0.5164 -
val_acc: 0.7694
Epoch 3/4
58620/58620 - 325s 6ms/step - loss: 0.4874 - acc: 0.7840 - val_loss: 0.5058 -
val_acc: 0.7716
Epoch 4/4
58620/58620 - 323s 6ms/step - loss: 0.4812 - acc: 0.7878 - val_loss: 0.5041 -
val_acc: 0.7730
14655/14655 - 20s 1ms/step
Test score: 0.5040943488819287
Test accuracy: 0.773046741742642

Top 1000 Words:

Without stopwords:
Train on 58620 samples, validate on 14655 samples
Epoch 1/4
58620/58620 - 100s 2ms/step - loss: 0.5097 - acc: 0.7719 - val_loss: 0.4997 -
val_acc: 0.7761
Epoch 2/4
58620/58620 - 130s 2ms/step - loss: 0.4810 - acc: 0.7870 - val_loss: 0.4957 -
val_acc: 0.7800
Epoch 3/4

Deep learning for detecting integrity risks in text documents 82

Churer Schriften zur Informationswissenschaft – Schrift 103 Master Thesis Kalbermatter

58620/58620 - 168s 3ms/step - loss: 0.4697 - acc: 0.7930 - val_loss: 0.4924 -
val_acc: 0.7799
Epoch 4/4
58620/58620 - 169s 3ms/step - loss: 0.4593 - acc: 0.7994 - val_loss: 0.4909 -
val_acc: 0.7795
14655/14655 - 10s 686us/step
Test score: 0.49087402938942337
Test accuracy: 0.7795291709476915

With stopwords:
Train on 58620 samples, validate on 14655 samples
Epoch 1/4
58620/58620 - 273s 5ms/step - loss: 0.5108 - acc: 0.7725 - val_loss: 0.5003 -
val_acc: 0.7836
Epoch 2/4
58620/58620 - 322s 5ms/step - loss: 0.4789 - acc: 0.7888 - val_loss: 0.4967 -
val_acc: 0.7806
Epoch 3/4
58620/58620 - 326s 6ms/step - loss: 0.4685 - acc: 0.7952 - val_loss: 0.4836 -
val_acc: 0.7861
Epoch 4/4
58620/58620 - 323s 6ms/step - loss: 0.4563 - acc: 0.8019 - val_loss: 0.4911 -
val_acc: 0.7845
14655/14655 - 15s 1ms/step
Test score: 0.4911303585969072
Test accuracy: 0.7845104059559702

Top 1500 Words:

Without stopwords:
Train on 58620 samples, validate on 14655 samples
Epoch 1/4
58620/58620 - 169s 3ms/step - loss: 0.5080 - acc: 0.7730 - val_loss: 0.4851 -
val_acc: 0.7887
Epoch 2/4
58620/58620 - 170s 3ms/step - loss: 0.4719 - acc: 0.7941 - val_loss: 0.4792 -
val_acc: 0.7885
Epoch 3/4
58620/58620 - 124s 2ms/step - loss: 0.4562 - acc: 0.8023 - val_loss: 0.4865 -
val_acc: 0.7897
Epoch 4/4
58620/58620 - 88s 2ms/step - loss: 0.4410 - acc: 0.8097 - val_loss: 0.4833 - val_acc:
0.7898
14655/14655 - 5s 353us/step
Test score: 0.48325673144085746
Test accuracy: 0.7897645854819801

With stopwords:
Train on 58620 samples, validate on 14655 samples
Epoch 1/4

Deep learning for detecting integrity risks in text documents 83

Churer Schriften zur Informationswissenschaft – Schrift 103 Master Thesis Kalbermatter

58620/58620 - 715s 12ms/step - loss: 0.5094 - acc: 0.7715 - val_loss: 0.4851 -
val_acc: 0.7852
Epoch 2/4
58620/58620 - 493s 8ms/step - loss: 0.4719 - acc: 0.7930 - val_loss: 0.4901 -
val_acc: 0.7848
Epoch 3/4
58620/58620 - 323s 6ms/step - loss: 0.4571 - acc: 0.8008 - val_loss: 0.4731 -
val_acc: 0.7907
Epoch 4/4
58620/58620 - 329s 6ms/step - loss: 0.4426 - acc: 0.8086 - val_loss: 0.4719 -
val_acc: 0.7950
14655/14655 - 19s 1ms/step
Test score: 0.471925805368264
Test accuracy: 0.7950187648737728

Top 2000 Words:
Without stopwords:
Train on 58620 samples, validate on 14655 samples
Epoch 1/4
58620/58620 - 384s 7ms/step - loss: 0.5056 - acc: 0.7731 - val_loss: 0.4870 -
val_acc: 0.7929
Epoch 2/4
58620/58620 - 407s 7ms/step - loss: 0.4672 - acc: 0.7945 - val_loss: 0.4711 -
val_acc: 0.7952
Epoch 3/4
58620/58620 - 540s 9ms/step - loss: 0.4476 - acc: 0.8049 - val_loss: 0.4783 -
val_acc: 0.7933
Epoch 4/4
58620/58620 - 760s 13ms/step - loss: 0.4289 - acc: 0.8154 - val_loss: 0.4896 -
val_acc: 0.7940
14655/14655 - 43s 3ms/step
Test score: 0.489629916559507
Test accuracy: 0.7939952234854188

With stopwords:
Epoch 1/4
58620/58620 - 734s 13ms/step - loss: 0.5044 - acc: 0.7749 - val_loss: 0.4934 -
val_acc: 0.7829
Epoch 2/4
58620/58620 - 415s 7ms/step - loss: 0.4636 - acc: 0.7973 - val_loss: 0.4692 -
val_acc: 0.7896
Epoch 3/4
58620/58620 - 320s 5ms/step - loss: 0.4467 - acc: 0.8072 - val_loss: 0.4788 -
val_acc: 0.7851
Epoch 4/4
58620/58620 - 303s 5ms/step - loss: 0.4301 - acc: 0.8168 - val_loss: 0.4783 -
val_acc: 0.7857
14655/14655 - 6s 393us/step
Test score: 0.47832598543053234
Test accuracy: 0.7856704196682647

Deep learning for detecting integrity risks in text documents 84

Churer Schriften zur Informationswissenschaft – Schrift 103 Master Thesis Kalbermatter

Top 2500 Words:
Without stopwords:
Train on 58620 samples, validate on 14655 samples
Epoch 1/4
58620/58620 - 404s 7ms/step - loss: 0.5043 - acc: 0.7749 - val_loss: 0.4969 -
val_acc: 0.7853
Epoch 2/4
58620/58620 - 410s 7ms/step - loss: 0.4598 - acc: 0.7988 - val_loss: 0.4790 -
val_acc: 0.7907
Epoch 3/4
58620/58620 - 600s 10ms/step - loss: 0.4390 - acc: 0.8110 - val_loss: 0.4814 -
val_acc: 0.7876
Epoch 4/4
58620/58620 - 706s 12ms/step - loss: 0.4186 - acc: 0.8217 - val_loss: 0.4879 -
val_acc: 0.7861
14655/14655 - 24s 2ms/step
Test score: 0.48794393906289096
Test accuracy: 0.7860798361845612

With stopwords:
Train on 58620 samples, validate on 14655 samples
Epoch 1/4
58620/58620 - 315s 5ms/step - loss: 0.5036 - acc: 0.7758 - val_loss: 0.4918 -
val_acc: 0.7801
Epoch 2/4
58620/58620 - 319s 5ms/step - loss: 0.4583 - acc: 0.8005 - val_loss: 0.4812 -
val_acc: 0.7896
Epoch 3/4
58620/58620 - 325s 6ms/step - loss: 0.4385 - acc: 0.8110 - val_loss: 0.4822 -
val_acc: 0.7842
Epoch 4/4
58620/58620 - 279s 5ms/step - loss: 0.4188 - acc: 0.8209 - val_loss: 0.4918 -
val_acc: 0.7868
14655/14655 - 10s 679us/step
Test score: 0.491755419932954
Test accuracy: 0.7868304332463418

Top 3000 Words:
Without stopwords:
Train on 58620 samples, validate on 14655 samples
Epoch 1/4
58620/58620 - 390s 7ms/step - loss: 0.4988 - acc: 0.7776 - val_loss: 0.4894 -
val_acc: 0.7885
Epoch 2/4
58620/58620 - 408s 7ms/step - loss: 0.4527 - acc: 0.8038 - val_loss: 0.4802 -
val_acc: 0.7889
Epoch 3/4
58620/58620 - 551s 9ms/step - loss: 0.4301 - acc: 0.8155 - val_loss: 0.4850 -
val_acc: 0.7857
Epoch 4/4

Deep learning for detecting integrity risks in text documents 85

Churer Schriften zur Informationswissenschaft – Schrift 103 Master Thesis Kalbermatter

58620/58620 - 730s 12ms/step - loss: 0.4055 - acc: 0.8293 - val_loss: 0.5110 -
val_acc: 0.7872
14655/14655 - 43s 3ms/step
Test score: 0.5110026398664121
Test accuracy: 0.7872398498887212

With stopwords:
Train on 58620 samples, validate on 14655 samples
Epoch 1/4
58620/58620 - 714s 12ms/step - loss: 0.5022 - acc: 0.7759 - val_loss: 0.4832 -
val_acc: 0.7831
Epoch 2/4
58620/58620 - 492s 8ms/step - loss: 0.4560 - acc: 0.8024 - val_loss: 0.4859 -
val_acc: 0.7834
Epoch 3/4
58620/58620 - 323s 6ms/step - loss: 0.4310 - acc: 0.8155 - val_loss: 0.4752 -
val_acc: 0.7871
Epoch 4/4
58620/58620 - 327s 6ms/step - loss: 0.4078 - acc: 0.8287 - val_loss: 0.4976 -
val_acc: 0.7816
14655/14655 - 20s 1ms/step
Test score: 0.4976094910590895
Test accuracy: 0.7815762538464148

Top 3500 Words:
Without stopwords:
Train on 58620 samples, validate on 14655 samples
Epoch 1/4
58620/58620 - 402s 7ms/step - loss: 0.4974 - acc: 0.7814 - val_loss: 0.4843 -
val_acc: 0.7919
Epoch 2/4
58620/58620 - 408s 7ms/step - loss: 0.4473 - acc: 0.8068 - val_loss: 0.4711 -
val_acc: 0.7896
Epoch 3/4
58620/58620 - 583s 10ms/step - loss: 0.4200 - acc: 0.8216 - val_loss: 0.4885 -
val_acc: 0.7905
Epoch 4/4
58620/58620 - 717s 12ms/step - loss: 0.3921 - acc: 0.8351 - val_loss: 0.5249 -
val_acc: 0.7875
14655/14655 - 30s 2ms/step
Test score: 0.524882550104939
Test accuracy: 0.7875127942803695

With stopwords:
Train on 58620 samples, validate on 14655 samples
Epoch 1/4
58620/58620 - 323s 6ms/step - loss: 0.4993 - acc: 0.7782 - val_loss: 0.4894 -
val_acc: 0.7891
Epoch 2/4
58620/58620 - 321s 5ms/step - loss: 0.4510 - acc: 0.8052 - val_loss: 0.4798 -
val_acc: 0.7932

Deep learning for detecting integrity risks in text documents 86

Churer Schriften zur Informationswissenschaft – Schrift 103 Master Thesis Kalbermatter

Epoch 3/4
58620/58620 - 327s 6ms/step - loss: 0.4262 - acc: 0.8179 - val_loss: 0.4790 -
val_acc: 0.7907
Epoch 4/4
58620/58620 - 248s 4ms/step - loss: 0.4023 - acc: 0.8306 - val_loss: 0.4906 -
val_acc: 0.7913
14655/14655 - 5s 355us/step
Test score: 0.4906210924061196
Test accuracy: 0.791334015645496

Top 4000 Words:
Without stopwords:
Train on 58620 samples, validate on 14655 samples
Epoch 1/4
58620/58620 - 395s 7ms/step - loss: 0.4980 - acc: 0.7784 - val_loss: 0.4751 -
val_acc: 0.7944
Epoch 2/4
58620/58620 - 408s 7ms/step - loss: 0.4451 - acc: 0.8085 - val_loss: 0.4731 -
val_acc: 0.7963
Epoch 3/4
58620/58620 - 570s 10ms/step - loss: 0.4159 - acc: 0.8227 - val_loss: 0.4828 -
val_acc: 0.7925
Epoch 4/4
58620/58620 - 726s 12ms/step - loss: 0.3878 - acc: 0.8365 - val_loss: 0.5269 -
val_acc: 0.7905
14655/14655 - 34s 2ms/step
Test score: 0.5269294022456324
Test accuracy: 0.7905151824868202

With stopwords:
Epoch 1/4
58620/58620 - 718s 12ms/step - loss: 0.4981 - acc: 0.7790 - val_loss: 0.4679 -
val_acc: 0.7963
Epoch 2/4
58620/58620 - 489s 8ms/step - loss: 0.4482 - acc: 0.8054 - val_loss: 0.4771 -
val_acc: 0.7944
Epoch 3/4
58620/58620 - 321s 5ms/step - loss: 0.4206 - acc: 0.8205 - val_loss: 0.4705 -
val_acc: 0.7998
Epoch 4/4
58620/58620 - 327s 6ms/step - loss: 0.3956 - acc: 0.8334 - val_loss: 0.4814 -
val_acc: 0.7962
14655/14655 - 20s 1ms/step
Test score: 0.4814114273895952
Test accuracy: 0.7961787785209922

Deeper RNN models

GRU Custom Word Embedding 1. Training
Use tf.cast instead.
Train on 58620 samples, validate on 14655 samples

Deep learning for detecting integrity risks in text documents 87

Churer Schriften zur Informationswissenschaft – Schrift 103 Master Thesis Kalbermatter

Epoch 1/4 - 58620/58620 - 956s 16ms/step - loss: 0.5195 - acc: 0.7674 - val_loss:
0.4987 - val_acc: 0.7745
Epoch 2/4 - 58620/58620 - 449s 8ms/step - loss: 0.4708 - acc: 0.7942 - val_loss:
0.4907 - val_acc: 0.7803
Epoch 3/4 - 58620/58620 - 449s 8ms/step - loss: 0.4636 - acc: 0.7979 - val_loss:
0.4979 - val_acc: 0.7752
Epoch 4/4 - 58620/58620 - 474s 8ms/step - loss: 0.4517 - acc: 0.8037 - val_loss:
0.4909 - val_acc: 0.7788

GRU Custom Word Embedding 2. Training
Train on 58620 samples, validate on 14655 samples
Epoch 1/4 - 58620/58620 - 972s 17ms/step - loss: 0.5221 - acc: 0.7653 - val_loss:
0.4965 - val_acc: 0.7821
Epoch 2/4 - 58620/58620 - 451s 8ms/step - loss: 0.4755 - acc: 0.7919 - val_loss:
0.4848 - val_acc: 0.7870
Epoch 3/4 - 58620/58620 - 450s 8ms/step - loss: 0.4614 - acc: 0.7997 - val_loss:
0.4822 - val_acc: 0.7881
Epoch 4/4 - 58620/58620 - 474s 8ms/step - loss: 0.4598 - acc: 0.7991 - val_loss:
0.4878 - val_acc: 0.7835

GRU Pre-Trained Word Embedding 1. Training
Train on 2594 samples, validate on 648 samples
Epoch 1/10 - 2594/2594 - 99s 38ms/step - loss: 0.5894 - acc: 0.6370 - val_loss:
0.5056 - val_acc: 0.7253
Epoch 2/10 - 2594/2594 - 97s 37ms/step - loss: 0.4889 - acc: 0.7355 - val_loss:
0.4542 - val_acc: 0.7577
Epoch 3/10 - 2594/2594 - 97s 37ms/step - loss: 0.4233 - acc: 0.7911 - val_loss:
0.4509 - val_acc: 0.7708
Epoch 4/10 - 2594/2594 - 96s 37ms/step - loss: 0.3936 - acc: 0.8094 - val_loss:
0.4190 - val_acc: 0.8017
Epoch 5/10 - 2594/2594 - 96s 37ms/step - loss: 0.3666 - acc: 0.8259 - val_loss:
0.3816 - val_acc: 0.8349
Epoch 6/10 - 2594/2594 - 97s 37ms/step - loss: 0.3642 - acc: 0.8283 - val_loss:
0.4349 - val_acc: 0.7909
Epoch 7/10 - 2594/2594 - 96s 37ms/step - loss: 0.3819 - acc: 0.8051 - val_loss:
0.3901 - val_acc: 0.8148
Epoch 8/10 - 2594/2594 - 96s 37ms/step - loss: 0.3420 - acc: 0.8342 - val_loss:
0.3805 - val_acc: 0.8187
Epoch 9/10 - 2594/2594 - 96s 37ms/step - loss: 0.3281 - acc: 0.8466 - val_loss:
0.3871 - val_acc: 0.8187
Epoch 10/10 - 2594/2594 - 96s 37ms/step - loss: 0.3002 - acc: 0.8601 - val_loss:
0.3801 - val_acc: 0.8372

GRU Pre-Trained Word Embedding 2. Training
Train on 2594 samples, validate on 648 samples
Epoch 1/10 - 2594/2594 - 100s 39ms/step - loss: 0.5730 - acc: 0.6615 - val_loss:
0.5270 - val_acc: 0.7176
Epoch 2/10 - 2594/2594 - 98s 38ms/step - loss: 0.4445 - acc: 0.7783 - val_loss:
0.4893 - val_acc: 0.7323
Epoch 3/10 - 2594/2594 - 97s 37ms/step - loss: 0.4065 - acc: 0.7988 - val_loss:
0.4315 - val_acc: 0.7909

Deep learning for detecting integrity risks in text documents 88

Churer Schriften zur Informationswissenschaft – Schrift 103 Master Thesis Kalbermatter

Epoch 4/10 - 2594/2594 - 98s 38ms/step - loss: 0.3706 - acc: 0.8242 - val_loss:
0.4288 - val_acc: 0.7971
Epoch 5/10 - 2594/2594 - 98s 38ms/step - loss: 0.3831 - acc: 0.8202 - val_loss:
0.4294 - val_acc: 0.7948
Epoch 6/10 - 2594/2594 - 97s 38ms/step - loss: 0.3499 - acc: 0.8400 - val_loss:
0.4380 - val_acc: 0.7731
Epoch 7/10 - 2594/2594 - 96s 37ms/step - loss: 0.3387 - acc: 0.8404 - val_loss:
0.4346 - val_acc: 0.8094
Epoch 8/10 - 2594/2594 - 97s 37ms/step - loss: 0.4202 - acc: 0.7808 - val_loss:
0.5180 - val_acc: 0.7153
Epoch 9/10 - 2594/2594 - 97s 38ms/step - loss: 0.4340 - acc: 0.7847 - val_loss:
0.4996 - val_acc: 0.7361
Epoch 10/10 - 2594/2594 - 94s 36ms/step - loss: 0.4003 - acc: 0.8063 - val_loss:
0.4986 - val_acc: 0.7438

Double GRU Custom Word Embedding 1. Training
Train on 58620 samples, validate on 14655 samples
Epoch 1/4 - 58620/58620 - 1460s 25ms/step - loss: 0.5235 - acc: 0.7645 - val_loss:
0.4985 - val_acc: 0.7795
Epoch 2/4 - 58620/58620 - 1732s 30ms/step - loss: 0.4921 - acc: 0.7781 - val_loss:
0.4806 - val_acc: 0.7873
Epoch 3/4 - 58620/58620 - 1667s 28ms/step - loss: 0.4644 - acc: 0.7959 - val_loss:
0.4769 - val_acc: 0.7898
Epoch 4/4 - 58620/58620 - 1669s 28ms/step - loss: 0.4559 - acc: 0.8025 - val_loss:
0.4754 - val_acc: 0.7899

Double GRU Custom Word Embedding 2. Training
Train on 58620 samples, validate on 14655 samples
Epoch 1/4 - 58620/58620 - 1462s 25ms/step - loss: 0.5270 - acc: 0.7602 - val_loss:
0.5163 - val_acc: 0.7627
Epoch 2/4 - 58620/58620 - 1737s 30ms/step - loss: 0.4838 - acc: 0.7843 - val_loss:
0.4854 - val_acc: 0.7835
Epoch 3/4 - 58620/58620 - 1675s 29ms/step - loss: 0.4618 - acc: 0.7976 - val_loss:
0.4798 - val_acc: 0.7881
Epoch 4/4 - 58620/58620 - 1671s 29ms/step - loss: 0.4498 - acc: 0.8056 - val_loss:
0.4785 - val_acc: 0.7889

Double GRU Pre-Trained Word Embedding 1. Training
Train on 2594 samples, validate on 648 samples
Epoch 1/4 - 2594/2594 - 78s 30ms/step - loss: 0.5776 - acc: 0.6727 - val_loss:
0.4415 - val_acc: 0.7886
Epoch 2/4 - 2594/2594 - 146s 56ms/step - loss: 0.4607 - acc: 0.7660 - val_loss:
0.4608 - val_acc: 0.7577
Epoch 3/4 - 2594/2594 - 159s 61ms/step - loss: 0.4145 - acc: 0.8009 - val_loss:
0.4013 - val_acc: 0.7924
Epoch 4/4 - 2594/2594 - 152s 58ms/step - loss: 0.3773 - acc: 0.8217 - val_loss:
0.3959 - val_acc: 0.7894

Double GRU Pre-Trained Word Embedding 2. Training
Train on 2594 samples, validate on 648 samples

Deep learning for detecting integrity risks in text documents 89

Churer Schriften zur Informationswissenschaft – Schrift 103 Master Thesis Kalbermatter

Epoch 1/4 - 2594/2594 - 155s 60ms/step - loss: 0.5624 - acc: 0.7093 - val_loss:
0.5097 - val_acc: 0.7215
Epoch 2/4 - 2594/2594 - 143s 55ms/step - loss: 0.4514 - acc: 0.7681 - val_loss:
0.4919 - val_acc: 0.7238
Epoch 3/4 - 2594/2594 - 146s 56ms/step - loss: 0.3862 - acc: 0.8086 - val_loss:
0.4610 - val_acc: 0.7577
Epoch 4/4 - 2594/2594 - 151s 58ms/step - loss: 0.3716 - acc: 0.8155 - val_loss:
0.4148 - val_acc: 0.7840

LSTM Custom Word Embedding 1. Training
Train on 58620 samples, validate on 14655 samples
Epoch 1/4 - 58620/58620 - 1128s 19ms/step - loss: 0.5211 - acc: 0.7660 - val_loss:
0.5048 - val_acc: 0.7796
Epoch 2/4 - 58620/58620 - ETA: 0s - loss: 0.4845 - acc: 0.783 - 585s 10ms/step -
loss: 0.4845 - acc: 0.7834 - val_loss: 0.5227 - val_acc: 0.7589
Epoch 3/4 - 58620/58620 - 841s 14ms/step - loss: 0.4839 - acc: 0.7848 - val_loss:
0.4924 - val_acc: 0.7807
Epoch 4/4 - 58620/58620 - 834s 14ms/step - loss: 0.4666 - acc: 0.7969 - val_loss:
0.4899 - val_acc: 0.7819

LSTM Custom Word Embedding 2. Training
Train on 58620 samples, validate on 14655 samples
Epoch 1/4 - 58620/58620 - 1149s 20ms/step - loss: 0.5252 - acc: 0.7627 - val_loss:
0.4896 - val_acc: 0.7847
Epoch 2/4 - 58620/58620 - ETA: 0s - loss: 0.4894 - acc: 0.781 - 587s 10ms/step -
loss: 0.4894 - acc: 0.7817 - val_loss: 0.4832 - val_acc: 0.7876
Epoch 3/4 - 58620/58620 - 847s 14ms/step - loss: 0.4753 - acc: 0.7900 - val_loss:
0.4815 - val_acc: 0.7879
Epoch 4/4 - 58620/58620 - 842s 14ms/step - loss: 0.4708 - acc: 0.7917 - val_loss:
0.4842 - val_acc: 0.7908

LSTM Pre-Trained Word Embedding 1. Training
Train on 2594 samples, validate on 648 samples
Epoch 1/4 - 2594/2594 - 127s 49ms/step - loss: 0.3446 - acc: 0.8387 - val_loss:
0.4305 - val_acc: 0.7840
Epoch 2/4 - 2594/2594 - 120s 46ms/step - loss: 0.3925 - acc: 0.7859 - val_loss:
0.4876 - val_acc: 0.7415
Epoch 3/4 - 2594/2594 - 119s 46ms/step - loss: 0.4082 - acc: 0.7936 - val_loss:
0.4406 - val_acc: 0.7708
Epoch 4/4 - 2594/2594 - 124s 48ms/step - loss: 0.3680 - acc: 0.8267 - val_loss:
0.4674 - val_acc: 0.7662

LSTM Pre-Trained Word Embedding 2. Training

Train on 2594 samples, validate on 648 samples
Epoch 1/4 - 2594/2594 - 127s 49ms/step - loss: 0.3242 - acc: 0.8529 - val_loss:
0.4200 - val_acc: 0.8025
Epoch 2/4 - 2594/2594 - 119s 46ms/step - loss: 0.3009 - acc: 0.8604 - val_loss:
0.4506 - val_acc: 0.7793
Epoch 3/4 - 2594/2594 - 119s 46ms/step - loss: 0.2837 - acc: 0.8741 - val_loss:
0.4175 - val_acc: 0.8040

Deep learning for detecting integrity risks in text documents 90

Churer Schriften zur Informationswissenschaft – Schrift 103 Master Thesis Kalbermatter

Epoch 4/4 - 2594/2594 - 124s 48ms/step - loss: 0.2627 - acc: 0.8843 - val_loss:
0.4693 - val_acc: 0.7986

Double LSTM Custom Word Embedding 1. Training
Train on 58620 samples, validate on 14655 samples
Epoch 1/4 - 58620/58620 - 2153s 37ms/step - loss: 0.5186 - acc: 0.7671 - val_loss:
0.4936 - val_acc: 0.7782
Epoch 2/4 - 58620/58620 - 2072s 35ms/step - loss: 0.4815 - acc: 0.7879 - val_loss:
0.4965 - val_acc: 0.7790
Epoch 3/4 - 58620/58620 - 1633s 28ms/step - loss: 0.4697 - acc: 0.7939 - val_loss:
0.4896 - val_acc: 0.7810
Epoch 4/4 - 58620/58620 - 1320s 23ms/step - loss: 0.4587 - acc: 0.7996 - val_loss:
0.4839 - val_acc: 0.7883

Double LSTM Custom Word Embedding 2. Training
Train on 58620 samples, validate on 14655 samples
Epoch 1/4 - 58620/58620 - 2189s 37ms/step - loss: 0.5328 - acc: 0.7554 - val_loss:
0.4933 - val_acc: 0.7793
Epoch 2/4 - 58620/58620 - 2109s 36ms/step - loss: 0.4855 - acc: 0.7832 - val_loss:
0.4821 - val_acc: 0.7915
Epoch 3/4 - 58620/58620 - 1626s 28ms/step - loss: 0.4697 - acc: 0.7931 - val_loss:
0.4823 - val_acc: 0.7881
Epoch 4/4 - 58620/58620 - 1309s 22ms/step - loss: 0.4631 - acc: 0.7979 - val_loss:
0.4799 - val_acc: 0.7913

Double LSTM Pre-Trained Word Embedding 1. Training
Train on 2594 samples, validate on 648 samples
Epoch 1/4 - 2594/2594 - 244s 94ms/step - loss: 0.5824 - acc: 0.6887 - val_loss:
0.5354 - val_acc: 0.7361
Epoch 2/4 - 2594/2594 - 162s 62ms/step - loss: 0.4500 - acc: 0.7939 - val_loss:
0.4010 - val_acc: 0.8040
Epoch 3/4 - 2594/2594 - 160s 62ms/step - loss: 0.3918 - acc: 0.8198 - val_loss:
0.3708 - val_acc: 0.8187
Epoch 4/4 - 2594/2594 - 159s 61ms/step - loss: 0.3972 - acc: 0.8042 - val_loss:
0.4470 - val_acc: 0.7623

Double LSTM Pre-Trained Word Embedding 2. Training
Train on 2594 samples, validate on 648 samples
Epoch 1/4 - 2594/2594 - 166s 64ms/step - loss: 0.6029 - acc: 0.6582 - val_loss:
0.4774 - val_acc: 0.7731
Epoch 2/4 - 2594/2594 - 183s 70ms/step - loss: 0.4556 - acc: 0.7708 - val_loss:
0.3950 - val_acc: 0.8110
Epoch 3/4 - 2594/2594 - 177s 68ms/step - loss: 0.4200 - acc: 0.7955 - val_loss:
0.3603 - val_acc: 0.8403
Epoch 4/4 - 2594/2594 - 162s 62ms/step - loss: 0.3842 - acc: 0.8190 - val_loss:
0.3579 - val_acc: 0.8380

Final Trainings

CNN

Deep learning for detecting integrity risks in text documents 91

Churer Schriften zur Informationswissenschaft – Schrift 103 Master Thesis Kalbermatter

1. Training
Train on 2594 samples, validate on 648 samples
Epoch 1/2
2594/2594 - 34s 13ms/step - loss: 0.5817 - acc: 0.6874 - val_loss: 0.3896 - val_acc:
0.8187
Epoch 2/2
2594/2594 - 33s 13ms/step - loss: 0.3589 - acc: 0.8311 - val_loss: 0.3051 - val_acc:
0.8588

2. Training
Train on 2594 samples, validate on 648 samples
Epoch 1/2
2594/2594 - 31s 12ms/step - loss: 0.5995 - acc: 0.6843 - val_loss: 0.4206 - val_acc:
0.8148
Epoch 2/2
2594/2594 - 30s 12ms/step - loss: 0.3807 - acc: 0.8250 - val_loss: 0.3220 - val_acc:
0.8457

3. Training
Train on 2594 samples, validate on 648 samples
Epoch 1/2
2594/2594 - 57s 22ms/step - loss: 0.3557 - acc: 0.8308 - val_loss: 0.3083 - val_acc:
0.8542
Epoch 2/2
2594/2594 - 57s 22ms/step - loss: 0.2916 - acc: 0.8770 - val_loss: 0.3039 - val_acc:
0.8688

4. Training
Train on 2594 samples, validate on 648 samples
Epoch 1/2
2594/2594 - 38s 14ms/step - loss: 0.5744 - acc: 0.6987 - val_loss: 0.3911 - val_acc:
0.8140
Epoch 2/2
2594/2594 - 37s 14ms/step - loss: 0.3503 - acc: 0.8338 - val_loss: 0.3325 - val_acc:
0.8380

GRU + Dropout

1. Training
Train on 2594 samples, validate on 648 samples
Epoch 1/6
2594/2594 - 93s 36ms/step - loss: 0.5794 - acc: 0.6663 - val_loss: 0.5211 - val_acc:
0.7207
Epoch 2/6
2594/2594 - 37s 14ms/step - loss: 0.4618 - acc: 0.7645 - val_loss: 0.4597 - val_acc:
0.7693
Epoch 3/6
2594/2594 - 37s 14ms/step - loss: 0.4403 - acc: 0.7841 - val_loss: 0.4715 - val_acc:
0.7639
Epoch 4/6

Deep learning for detecting integrity risks in text documents 92

Churer Schriften zur Informationswissenschaft – Schrift 103 Master Thesis Kalbermatter

2594/2594 - 38s 15ms/step - loss: 0.4096 - acc: 0.8067 - val_loss: 0.4516 - val_acc:
0.7631
Epoch 5/6
2594/2594 - 41s 16ms/step - loss: 0.3955 - acc: 0.8057 - val_loss: 0.4586 - val_acc:
0.7531
Epoch 6/6
2594/2594 - 41s 16ms/step - loss: 0.3723 - acc: 0.8217 - val_loss: 0.4454 - val_acc:
0.7878

2. Training
Train on 2594 samples, validate on 648 samples
Epoch 1/6
2594/2594 - 42s 16ms/step - loss: 0.5965 - acc: 0.6372 - val_loss: 0.5304 - val_acc:
0.7114
Epoch 2/6
2594/2594 - 45s 17ms/step - loss: 0.4850 - acc: 0.7452 - val_loss: 0.5080 - val_acc:
0.7083
Epoch 3/6
2594/2594 - 41s 16ms/step - loss: 0.4555 - acc: 0.7675 - val_loss: 0.4674 - val_acc:
0.7623
Epoch 4/6
2594/2594 - 63s 24ms/step - loss: 0.4257 - acc: 0.7843 - val_loss: 0.4535 - val_acc:
0.7639
Epoch 5/6
2594/2594 - 65s 25ms/step - loss: 0.3935 - acc: 0.8113 - val_loss: 0.4334 - val_acc:
0.7793
Epoch 6/6
2594/2594 - 65s 25ms/step - loss: 0.3679 - acc: 0.8261 - val_loss: 0.4217 - val_acc:
0.7971

3. Training
Train on 2594 samples, validate on 648 samples
Epoch 1/6
2594/2594 - 68s 26ms/step - loss: 0.5861 - acc: 0.6486 - val_loss: 0.5218 - val_acc:
0.7191
Epoch 2/6
2594/2594 - 62s 24ms/step - loss: 0.4794 - acc: 0.7496 - val_loss: 0.4705 - val_acc:
0.7508
Epoch 3/6
2594/2594 - 62s 24ms/step - loss: 0.4181 - acc: 0.7936 - val_loss: 0.4195 - val_acc:
0.8040
Epoch 4/6
2594/2594 - 50s 19ms/step - loss: 0.3929 - acc: 0.8096 - val_loss: 0.4551 - val_acc:
0.7639
Epoch 5/6
2594/2594 - 36s 14ms/step - loss: 0.4071 - acc: 0.7976 - val_loss: 0.4669 - val_acc:
0.7577
Epoch 6/6
2594/2594 - 36s 14ms/step - loss: 0.3840 - acc: 0.8152 - val_loss: 0.4292 - val_acc:
0.8009

Deep learning for detecting integrity risks in text documents 93

Epoch 2/6

Churer Schriften zur Informationswissenschaft – Schrift 103 Master Thesis Kalbermatter

4. Training
Train on 2594 samples, validate on 648 samples
Epoch 1/6
2594/2594 - 44s 17ms/step - loss: 0.5897 - acc: 0.6505 - val_loss: 0.5211 - val_acc:
0.7215
Epoch 2/6
2594/2594 - 47s 18ms/step - loss: 0.4784 - acc: 0.7537 - val_loss: 0.4866 - val_acc:
0.7284
Epoch 3/6
2594/2594 - 72s 28ms/step - loss: 0.4595 - acc: 0.7554 - val_loss: 0.4373 - val_acc:
0.7693
Epoch 4/6
2594/2594 - 71s 27ms/step - loss: 0.4178 - acc: 0.7922 - val_loss: 0.4382 - val_acc:
0.7901
Epoch 5/6
2594/2594 - 72s 28ms/step - loss: 0.3894 - acc: 0.8167 - val_loss: 0.3934 - val_acc:
0.8140
Epoch 6/6
2594/2594 - 69s 27ms/step - loss: 0.3955 - acc: 0.8157 - val_loss: 0.3992 - val_acc:
0.8002

LSTM + Dropout

1. Training
Train on 2594 samples, validate on 648 samples
Epoch 1/6
2594/2594 - 89s 34ms/step - loss: 0.5877 - acc: 0.6586 - val_loss: 0.5043 - val_acc:
0.7438
Epoch 2/6
2594/2594 - 86s 33ms/step - loss: 0.4705 - acc: 0.7639 - val_loss: 0.4621 - val_acc:
0.7616
Epoch 3/6
2594/2594 - 87s 34ms/step - loss: 0.4279 - acc: 0.7818 - val_loss: 0.4817 - val_acc:
0.7461
Epoch 4/6
2594/2594 - 63s 24ms/step - loss: 0.3908 - acc: 0.8121 - val_loss: 0.4427 - val_acc:
0.7785
Epoch 5/6
2594/2594 - 48s 18ms/step - loss: 0.3955 - acc: 0.8036 - val_loss: 0.4648 - val_acc:
0.7284
Epoch 6/6
2594/2594 - 50s 19ms/step - loss: 0.4058 - acc: 0.7862 - val_loss: 0.4031 - val_acc:
0.7847

2. Training
Train on 2594 samples, validate on 648 samples
Epoch 1/6
2594/2594 - 82s 31ms/step - loss: 0.5898 - acc: 0.6473 - val_loss: 0.4750 - val_acc:
0.7670

Deep learning for detecting integrity risks in text documents 94

Churer Schriften zur Informationswissenschaft – Schrift 103 Master Thesis Kalbermatter

2594/2594 - 78s 30ms/step - loss: 0.4698 - acc: 0.7658 - val_loss: 0.4607 - val_acc:
0.7685
Epoch 3/6
2594/2594 - 64s 25ms/step - loss: 0.4556 - acc: 0.7643 - val_loss: 0.4440 - val_acc:
0.7809
Epoch 4/6
2594/2594 - 49s 19ms/step - loss: 0.4125 - acc: 0.7959 - val_loss: 0.4058 - val_acc:
0.7971
Epoch 5/6
2594/2594 - 54s 21ms/step - loss: 0.4173 - acc: 0.8067 - val_loss: 0.3935 - val_acc:
0.8272
Epoch 6/6
2594/2594 - 76s 29ms/step - loss: 0.4441 - acc: 0.7866 - val_loss: 0.4195 - val_acc:
0.8241

3. Training
Train on 2594 samples, validate on 648 samples
Epoch 1/6
2594/2594 - 79s 31ms/step - loss: 0.4204 - acc: 0.7905 - val_loss: 0.3883 - val_acc:
0.8125
Epoch 2/6
2594/2594 - 78s 30ms/step - loss: 0.3840 - acc: 0.8192 - val_loss: 0.3872 - val_acc:
0.8133
Epoch 3/6
2594/2594 - 50s 19ms/step - loss: 0.3735 - acc: 0.8346 - val_loss: 0.3891 - val_acc:
0.8110
Epoch 4/6
2594/2594 - 42s 16ms/step - loss: 0.3644 - acc: 0.8337 - val_loss: 0.3690 - val_acc:
0.8302
Epoch 5/6
2594/2594 - 42s 16ms/step - loss: 0.3395 - acc: 0.8408 - val_loss: 0.4090 - val_acc:
0.7940
Epoch 6/6
2594/2594 - 43s 16ms/step - loss: 0.3424 - acc: 0.8398 - val_loss: 0.3667 - val_acc:
0.8256

4. Training
Train on 2594 samples, validate on 648 samples
Epoch 1/6
2594/2594 - 81s 31ms/step - loss: 0.5868 - acc: 0.6559 - val_loss: 0.5129 - val_acc:
0.7137
Epoch 2/6
2594/2594 - 78s 30ms/step - loss: 0.4794 - acc: 0.7581 - val_loss: 0.4390 - val_acc:
0.7755
Epoch 3/6
2594/2594 - 77s 30ms/step - loss: 0.4713 - acc: 0.7483 - val_loss: 0.4662 - val_acc:
0.7685
Epoch 4/6
2594/2594 - 57s 22ms/step - loss: 0.4337 - acc: 0.7805 - val_loss: 0.3937 - val_acc:
0.8071
Epoch 5/6

Deep learning for detecting integrity risks in text documents 95

Churer Schriften zur Informationswissenschaft – Schrift 103 Master Thesis Kalbermatter

2594/2594 - 78s 30ms/step - loss: 0.4199 - acc: 0.7995 - val_loss: 0.4025 - val_acc:
0.8102
Epoch 6/6
2594/2594 - 78s 30ms/step - loss: 0.3971 - acc: 0.8074 - val_loss: 0.3836 - val_acc:
0.8272

LSTM Bidirectional

1. Training
Train on 2594 samples, validate on 648 samples
Epoch 1/6 - 2594/2594 - 51s 20ms/step - loss: 0.6219 - acc: 0.6523 - val_loss:
0.5210 - val_acc: 0.7423
Epoch 2/6 - 2594/2594 - 48s 19ms/step - loss: 0.4674 - acc: 0.7697 - val_loss:
0.4334 - val_acc: 0.7894
Epoch 3/6 - 2594/2594 - 48s 19ms/step - loss: 0.4025 - acc: 0.8098 - val_loss:
0.4000 - val_acc: 0.8133
Epoch 4/6 - 2594/2594 - 48s 19ms/step - loss: 0.4110 - acc: 0.8001 - val_loss:
0.3917 - val_acc: 0.8117
Epoch 5/6 - 2594/2594 - 48s 19ms/step - loss: 0.3930 - acc: 0.8153 - val_loss:
0.4010 - val_acc: 0.8156
Epoch 6/6 - 2594/2594 - 48s 19ms/step - loss: 0.3797 - acc: 0.8252 - val_loss:
0.3750 - val_acc: 0.8117

2. Training
Train on 2594 samples, validate on 648 samples
Epoch 1/6 - 2594/2594- 98s 38ms/step - loss: 0.6177 - acc: 0.6357 - val_loss: 0.5281
- val_acc: 0.6944
Epoch 2/6 - 2594/2594- 99s 38ms/step - loss: 0.4573 - acc: 0.7901 - val_loss: 0.4350
- val_acc: 0.7917
Epoch 3/6 - 2594/2594- 99s 38ms/step - loss: 0.4189 - acc: 0.8009 - val_loss: 0.4354
- val_acc: 0.8009
Epoch 4/6 - 2594/2594- 95s 36ms/step - loss: 0.4316 - acc: 0.7899 - val_loss: 0.4395
- val_acc: 0.7917
Epoch 5/6 - 2594/2594- 94s 36ms/step - loss: 0.4864 - acc: 0.7286 - val_loss: 0.5286
- val_acc: 0.7315
Epoch 6/6 - 2594/2594- 94s 36ms/step - loss: 0.4921 - acc: 0.7463 - val_loss: 0.4867
- val_acc: 0.7569

3. Training
Train on 2594 samples, validate on 648 samples
Epoch 1/6 - 2594/2594- 105s 40ms/step - loss: 0.6200 - acc: 0.6342 - val_loss:
0.5056 - val_acc: 0.7554
Epoch 2/6 - 2594/2594- 99s 38ms/step - loss: 0.5154 - acc: 0.7114 - val_loss: 0.5134
- val_acc: 0.7423
Epoch 3/6 - 2594/2594- 99s 38ms/step - loss: 0.5084 - acc: 0.7388 - val_loss: 0.4871
- val_acc: 0.7508
Epoch 4/6 - 2594/2594- 95s 37ms/step - loss: 0.4889 - acc: 0.7438 - val_loss: 0.4789
- val_acc: 0.7554
Epoch 5/6 - 2594/2594- 95s 37ms/step - loss: 0.4703 - acc: 0.7540 - val_loss: 0.4675
- val_acc: 0.7569

Deep learning for detecting integrity risks in text documents 96

Churer Schriften zur Informationswissenschaft – Schrift 103 Master Thesis Kalbermatter

Epoch 6/6 - 2594/2594- 95s 36ms/step - loss: 0.4416 - acc: 0.7795 - val_loss: 0.4394
- val_acc: 0.7878

4. Training
Train on 2594 samples, validate on 648 samples
Epoch 1/6 - 2594/2594- 54s 21ms/step - loss: 0.6145 - acc: 0.6345 - val_loss: 0.5224
- val_acc: 0.7585
Epoch 2/6 - 2594/2594- 51s 20ms/step - loss: 0.4677 - acc: 0.7704 - val_loss: 0.4252
- val_acc: 0.8117
Epoch 3/6 - 2594/2594- 51s 20ms/step - loss: 0.4306 - acc: 0.8001 - val_loss: 0.4413
- val_acc: 0.7878
Epoch 4/6 - 2594/2594- 51s 19ms/step - loss: 0.4102 - acc: 0.8082 - val_loss: 0.4131
- val_acc: 0.8264
Epoch 5/6 - 2594/2594- 50s 19ms/step - loss: 0.3961 - acc: 0.8211 - val_loss: 0.4231
- val_acc: 0.7870
Epoch 6/6 - 2594/2594- 50s 19ms/step - loss: 0.3877 - acc: 0.8225 - val_loss: 0.3836
- val_acc: 0.8272

Deep learning for detecting integrity risks in text documents 97

Churer Schriften zur Informationswissenschaft – Schrift 103 Master Thesis Kalbermatter

Declaration of Autorship

I herewith declare that this is my independent work written by me and using only

admissible aides and no other sources than those given. I have marked as such, all

passages, which have been taken literally or analogously from another source. I am

aware that if this is not the case, the executive board of the university of applied

sciences is entitled to rescind any qualifications awarded or any title bestowed based

on this work.

Chur, 09.08.2019

Place, Date Urban Kalbermatter

Bisher erschienene Schriften

Ergebnisse von Forschungsprojekten erscheinen jeweils in Form von
Arbeitsberichten in Reihen. Sonstige Publikationen erscheinen in Form von
alleinstehenden Schriften.

Derzeit gibt es in den Churer Schriften zur Informationswissenschaft folgende
Reihen:
Reihe Berufsmarktforschung

Weitere Publikationen finden Sie unter folgendem Link:

https://www.fhgr.ch/fhgr/angewandte-zukunftstechnologien/schweizerisches-institut-
fuer-informationswissenschaft-sii/publikationen/churer-schriften/

Churer Schriften zur Informationswissenschaft – Schrift 93
Herausgegeben von Wolfgang Semar
Silvana Rüfli
Die Usability von E-Book-Angeboten wissenschaftlicher Bibliotheken Eine
Untersuchung am Beispiel der Universitätsbibliotheken
St. Gallen, Bern und Zürich
Chur, 2018
ISSN 1660-945X

Churer Schriften zur Informationswissenschaft – Schrift 94
Herausgegeben von Wolfgang Semar
Vera Knoll
Leichte Sprache in amtlichen Publikationen und Webseiten
Wie ernst nehmen Verwaltungen die Leichte Sprache in der deutschsprachigen
Schweiz?
Chur, 2018
ISSN 1660-945X

Churer Schriften zur Informationswissenschaft – Schrift 95
Herausgegeben von Wolfgang Semar
Andrea Traber
Wie lernen studentische Bibliotheks-Nutzende und was macht für sie den optimalen
Arbeitsplatz aus?
Eine Studie der Lernlandschaft der Universitätsbibliothek St. Gallen
Chur, 2018
ISSN 1660-945X

Churer Schriften zur Informationswissenschaft – Schrift 96
Herausgegeben von Wolfgang Semar
Irina Morell
„Für das Volk und durch das Volk?“
Bibliotheken als Gegenstand von Volksabstimmungen und Petitionen
Chur, 2018
ISSN 1660-945X

Churer Schriften zur Informationswissenschaft – Schrift 97
Herausgegeben von Wolfgang Semar
Monika Rohner
Betrachtung der Data Visualization Literacy in der angestrebten Schweizer
Informationsgesellschaft
Chur, 2018
ISSN 1660-945X

https://www.fhgr.ch/fhgr/angewandte-zukunftstechnologien/schweizerisches-institut-fuer-informationswissenschaft-sii/publikationen/churer-schriften/
https://www.fhgr.ch/fhgr/angewandte-zukunftstechnologien/schweizerisches-institut-fuer-informationswissenschaft-sii/publikationen/churer-schriften/

Churer Schriften zur Informationswissenschaft – Schrift 98
Herausgegeben von Wolfgang Semar
Kirsten Scherer Auberson
Counteracting Concept Drift in Natural Language Classifiers: Proposal for an
Automated Method
Chur, 2018
ISSN 1660-945X

Churer Schriften zur Informationswissenschaft – Schrift 99
Herausgegeben von Wolfgang Semar
Hanna Kummel
Enhancing Collaboration in Collaborative Problem-Solving with Conversational
Agents
Chur, 2019
ISSN 1660-945X

Churer Schriften zur Informationswissenschaft – Schrift 100
Herausgegeben von Wolfgang Semar
Carina Burch
Community – eine Untersuchung was es im Kontext von allgemein-öffentlichen
Bibliotheken bedeutet
Chur, 2019
ISSN 1660-945X

Churer Schriften zur Informationswissenschaft – Schrift 101
Herausgegeben von Wolfgang Semar
Reihe Berufsmarktforschung – Arbeitsbericht 8 Sharon Alt, Bernard Bekavac, Urs
Dahinden Absolventenstudie 2017
Bachelorstudiengang Information Science, MAS Information Science,
Masterstudienrichtung Information and Data Management
Chur, 2019
ISSN 1660-945X

Churer Schriften zur Informationswissenschaft – Schrift 102
Herausgegeben von Wolfgang Semar
Debora Greter
Wissensmanagement in der Lebensmittelindustrie
Konzept zur Integration von Wissensmanagement in bestehende Qualitäts- und
Lebensmittelsicherheits-Managementsysteme
Chur, 2019
ISSN 1660-945X

Churer Schriften zur Informationswissenschaft – Schrift 103
Herausgegeben von Wolfgang Semar
Urban Kalbermatter
Deep learning for detecting integrity risks in text documents
Chur, 2019
ISSN 1660-945X

Über die Informationswissenschaft der

Fachhochschule Graubünden

Die Informationswissenschaft ist in der Schweiz noch ein relativ junger Lehr- und
Forschungs- bereich. International weist diese Disziplin aber vor allem im anglo-
amerikanischen Bereich eine jahrzehntelange Tradition auf. Die klassischen
Bezeichnungen dort sind Information Science, Library Science oder Information
Studies. Die Grundfragestellung der Informationswissenschaft liegt in der Betrachtung
der Rolle und des Umgangs mit Information in allen ihren Ausprägungen und Medien
sowohl in Wirtschaft und Gesellschaft. Die Informationswissenschaft wird in Chur
integriert betrachtet.

Diese Sicht umfasst nicht nur die Teildisziplinen Bibliothekswissenschaft,
Archivwissenschaft und Dokumentationswissenschaft. Auch neue Entwicklungen im
Bereich Medienwirtschaft, Informa- tions- und Wissensmanagement und Big Data
werden gezielt aufgegriffen und im Lehr- und Forschungsprogramm berücksichtigt.

Der Studiengang Informationswissenschaft wird seit 1998 als Vollzeitstudiengang in
Chur ange- boten und seit 2002 als Teilzeit-Studiengang in Zürich. Seit 2010 rundet
der Master of Science in Business Administration das Lehrangebot ab.

Der Arbeitsbereich Informationswissenschaft vereinigt Cluster von Forschungs-,
Entwicklungs- und Dienstleistungspotenzialen in unterschiedlichen
Kompetenzzentren:

 Information Management & Competitive Intelligence

 Collaborative Knowledge Management

 Information and Data Management

 Records Management

 Library Consulting

 Information Laboratory

Diese Kompetenzzentren werden im Swiss Institute for Information
zusammen- gefasst.

Research

IMPRESSUM

Verlag & Anschrift

Arbeitsbereich Informationswissenschaft

FHGR – Fachhochschule Graubünden
University of Applied Sciences
Pulvermühlestrasse 57
CH – 7000 Chur

www.blog.fhgr.ch/dis

www.fhgr.ch

ISSN 1660-945X

Institutsleitung

Prof. Dr. Ingo Barkow

Telefon: +41 81 286 24 61

Email: ingo.barkow@fhgr.ch

Sekretariat

Telefon: +41 81 286 24 24

Fax: +41 81 286 24 00

Email: clarita.decurtins@fhgr.ch

http://www.blog.fhgr.ch/dis
http://www.fhgr.ch/
mailto:ingo.barkow@fhgr.ch
mailto:clarita.decurtins@fhgr.ch

