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Abstract 

Deep Learning has become a widely used method in the field of Natural Language 

Processing including the field of text classification. It has been shown to perform better 

than conventional classification solutions in many cases. The focus of this thesis is to 

research and develop methods, which automatically identify discussions on integrity 

related issues in news articles using Deep Neural Networks. 

A literature review is presented with a focus on the state of the art in Deep Learning 

for text classification. Further model architectures were identified, as well as 

frameworks to implement the models. The Deep Neural Networks were implemented, 

trained and evaluated. In an iterative process the networks were improved. Finally, 

based on the evaluation, recommendations for the implementation of Deep Learning 

methods for the detection of integrity risks were made. 
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1. Intodruction 

This thesis is part of the “Integrity Risk Monitor” project, which aims to advance integrity 

management by adapting methods from the fields of information and computer 

science. The project develops real-time integrity risk monitoring tools, with the goal 

a. to support researchers in identifying and tracking integrity events, 

b. to provide researchers with means to use data on past events, to develop 

models that are suitable to explain these events and to predict future gaps 

in integrity risk monitoring, and 

c. to raise awareness of the affected stakeholders by publishing reports that 

summarize the results of these studies. 

The focus of this thesis is on one particular task of the project: the research and design 

of methods, which automatically identify discussions on integrity-related issues. This 

is achieved by applying Deep Learning methods. 

Since there is a multitude of different Deep Neural Network models, architectures and 

configurations, the aim is to identify, test and compare the most suitable ones for this 

particular task. Deep Learning is being used for a multitude of Natural Language 

Processing (NLP) tasks such as language modeling (Yoshua Bengio, Ducharme, 

Vincent, & Janvin, 2003), paraphrase detection (Socher, Lin, Ng, & Manning, 2011) 

and Word Embedding extraction (Mikolov, Chen, Corrado, & Dean, 2013) and has 

been shown to perform better than conventional classification solutions in many cases 

(Collobert et al., 2011). The performance of Deep Learning methods depends on both 

the quality and nature of the input data, the aim of the application, as well as the Deep 

Neural Network architectures and configurations being used. With the task being the 

detection of integrity events, this thesis aims to find out, which, among a selection of 

Deep Neural Network architectures and configurations performs best at classifying and 

thus detecting integrity risks in text documents. 
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2. Literature Review 

2.1 Integrity 

Integrity risks or integrity risk events are threats to the integrity of an organization or 

person, which could potentially lead to a decrease in public reputation – such as money 

laundering, corruption and fraud. This is usually referred to as “integrity violations” in 

the literature. The early detection of an integrity risk is a big advantage, because it 

gives the concerned parties the opportunity to react swiftly and accordingly to the 

threat, while it is still containable. (Molina, 2018, pp. 1–2) 

2.2 Deep Learning 

Deep Learning is a sub-category of Machine Learning, which is a sub-category of 

Artificial Intelligence. The field of Artificial Intelligence came to exist out of the question, 

if machines can be made to think like humans. Though this question is still 

unanswered, the field of Artificial Intelligence grew and is currently much broader than 

what it originally was, focusing on creating machines and software that are able to do 

intellectual tasks, which are normally done by humans. (Carbonell, Michalski, & 

Mitchell, 1983, pp. 69–79) 

 

 
Figure 1: Categorization of Deep Learning within the field of Artificial Intelligence – based on (Chollet, 

2017a, fig. 1.1) 

 

These tasks can be achieved by non-Machine-Learning approaches like the symbolic 

AI approach, such as expert systems, in which a sufficient amount of explicit rules are 

defined to solve specific problems and tasks. These approaches are useful to solve 

well defined logical problems, but are not suitable to solve more complex and abstract 

tasks. The scope of these expert systems is the amount of pre-defined explicit rules. 

This makes expert systems more suitable for smaller tasks, because explicitly 

programming rules and managing big expert systems require a lot of time and effort. 

After the symbolic AI approach reached its peak success in the 1980s, it was clear that 
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an alternative approach was needed for more complex and abstract tasks. This made 

the Machine Learning approach gain in popularity and it soon replaced the symbolic 

AI approach as the most popular method in Artificial Intelligence. (Chollet, 2017a, 

Chapter 1; Schmidhuber, 2015, p. 4) 

The difference between Machine Learning and classical programming, such as what 

has been used in the symbolic AI approach, is the following: The latter requires 

predefined rules and the output is a set of answers to a certain task, while in Machine 

Learning answers are provided and the algorithm finds rules that make the detection 

of these answers possible. (Chollet, 2017a, Chapter 1) 

 

 
Figure 2: the Machine Learning approach compared to classical programming - based on (Chollet, 

2017a, fig. 1.2) 

 

In Machine Learning rules are learned rather than explicitly programmed. By using pre- 

labeled datasets consisting of input samples and answers to the specific task, the 

Machine Learning algorithm searches for statistical patterns, which can then be used 

to define rules. This process is called “training” and the output model containing these 

rules can be used as a classifier on unlabeled input samples or datasets to predict 

solutions to the same task it was trained for. (Chollet, 2017a, Chapter 1) 

The main precondition to being able to classify a dataset with a Machine Learning 

approach is that the samples within the data are connected somehow by either 

correlation or causation to a certain label, such as a class. In addition to that, to be 

able to use Machine Learning to build an output model which is able to predict answers 

to the specific task, the following three requisites need to be met (Gluon Contributors, 

2017, Chapter 1): 

- Input data needs to be defined and available. Depending on the task this data 

can come in a variety of forms, in most cases it is either images, text, audio, 

video or structured data such as web pages. In supervised learning labels or 
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output examples need to be defined and linked to the input data. A single data 

point within a dataset is called a sample. 

- A Machine Learning model which generates rules out of the input data has to 

be defined and build. 

- A way to examine how successful the Machine Learning model is has to be 

defined. This makes it possible to compare the performance before and after an 

adjustment, through which can then be determined if the adjustments should be 

kept or not. This step is called learning and is done by using a loss function and 

an algorithm to minimize the loss function. 

To make sure, that the training results are representative of data outside of the dataset, 

which is used for training, the labeled input data is usually split up into two parts, the 

training dataset and the verification or test dataset. The training dataset is used to train 

the output model, which subsequently will be validated by applying the output model 

to the validation dataset. The percentage of correctly solved tasks shows how well the 

output model performs on a dataset, which is different to the one used in training. It is 

thus important to keep track of two quantities: the training error and the test error or 

their counterparts, the training accuracy and the test accuracy. The training error is the 

error on the training dataset while the test error is the error on the verification dataset, 

meaning the amount of samples whose outputs were not correctly predicted, thus do 

not correspond to the output samples provided with the input data. The accuracy 

depicts the opposite, what percentage of samples in a dataset were correctly 

answered. (Gluon Contributors, 2017, Chapter 1) 

Deep Learning describes a Machine Learning approach, which uses a multilayered 

Neural Network to solve a task. An Artificial Neural Network is a system, which is able 

to solve problems without explicitly programming it to do so based on a particular task. 

Artificial Neural Networks were first described in the literature long before Deep 

Learning, when in 1943 the concept was originally invented to understand and 

represent the information processing capabilities of a biological brain and thus of 

Biological Neural Networks. (McCulloch & Pitts, 1988) 

An Artificial Neural Network consists of neurons, which are interconnected. A neuron 

is a single point in a Neural Network, which receives an input and computes an output 

by applying a mathematical function to it. Neural Networks used in Deep Learning are 

called Deep Neural Networks. Deep Neural Networks are a subset of Artificial Neural 



Deep learning for detecting integrity risks in text documents 10 

Churer Schriften zur Informationswissenschaft – Schrift 103 Master Thesis Kalbermatter 

 

 

 

 

Networks, which consist of a mix of layers stacked on top of each other. The difference 

between Artificial Neural Networks and Deep Neural Networks is that Artificial Neural 

Networks in their simplest form only have three layers, while the latter consists of 

multiple hidden layers. 

 

 
Figure 3: Visualization of a simple Deep Neural Network architecture with two hidden layers – based on 

(Srivastava, Hinton, Krizhevsky, Sutskever, & Salakhutdinov, 2014, fig. 1a) 

 
The composition of a Deep Neural Network is as follows: The first layer is called the 

input layer, which takes in the input data. It is followed by one or multiple hidden layers, 

which are followed by an output layer. A layer takes in data, extracts features out of 

the data, which distinguish one input from another and sorts the inputs into different 

categories, depending if these features are present or not. By stacking multiple layers 

on top of each other, complex distinctions between different input data can be 

achieved. The amount of layers present in a Deep Neural Network is called the “depth” 

of the network. The more layers a Neural Network contains, the deeper it is, the less 

layers it contains, the shallower it is. This is also the reason why Deep Learning is 

called Deep Learning – It requires a deeper version of Neural Networks than the ones 

used in traditional Machine Learning. Many different architectures for these layers have 

been developed over the years to improve the performance of specific Deep Learning 

applications. (Chollet, 2017a, Chapter 2.1; Schmidhuber, 2015, p. 4) 
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The entirety of these layers is called a “model” or “network” (Chollet, 2017a, Chapter 

1.1.4). In this thesis the word model is being used for the theoretical composition of a 

specific network, while a network is an actual manifestation of a certain model. This is 

not to be confused with the model, which is produced in the process of training, which 

is referred to in this thesis as the “output model”. The neurons in a network are either 

activated by the input data or the data forwarded by neurons in the prior network layer. 

By defining so-called weights or parameters to the individual layers and their neurons, 

the network calculates how to solve a certain task. At the beginning of the training, the 

layers will usually get randomly assigned weights. The goal of the training is to adjust 

the weights accordingly, so that the performance of the network improves. How much 

these weights get adjusted is defined by the following three parameters: (Gluon 

Contributors, 2017, Chapter 1) 

- the loss function, also called cost function or objective, which measures 

success, thus allows to see if what was done was a success or not, 

- the gradient descent, which is an optimization algorithm, which is responsible 

for calculating the extent of the changes to the weights on the basis of the results 

of the loss function, 

- and the learning rate, which is a parameter that defines at which rate old 

information is overwritten by new information in each iteration. 

The trainings consist of three repeating steps. First a prediction is made. For example, 

if sample A has feature B and C it means that sample A has label D. The predicted 

output score is compared with the actual output score, by using the loss function, which 

enables the network to evaluate its adjustments. If the score improved the weights get 

adjusted accordingly, if the score decreases the weights will also be adjusted 

accordingly to reflect this discovery. For example, sample A has label D as a 

predefined label, so the prediction was correct, this means the function is adjusted to 

reflect that the likelihood of an input sample having label D is higher, if it contains both 

feature B and C. This adjustment is done by using the gradient descent algorithm, 

which adjusts the function until a local minimum is achieved. These adjustment steps 

are called learning rate. The higher the learning rate, the faster the local minimum is 

achieved, but this also brings the risk of overshooting the local minimum. The 

mechanism used to make these adjustments possible is called the Backpropagation 
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algorithm. The total of these adjustments make up the output model. (Gluon 

Contributors, 2017, Chapter 1) 

An additional parameter, which can be adjusted according to the specific needs at a 

time, is the amount of epochs during a training session. An epoch is one iteration 

through all the training data. The progress in each epoch is evaluated at the end of 

each epoch by applying the output model to the validation dataset. The trick is to let 

the Deep Neural Network go through as many epochs as needed but not more than 

that. If the training does not go through enough epochs, then the risk is, that the model 

is not adapted enough to the specific use case, but still resembles too much the initial 

random values. This problem is also called Underfitting and can be solved by continued 

training of the model. Too many epochs on the other hand lead to a problem called 

“Overfitting”. Overfitting occurs when a model is too adapted to the training set, thus 

loses the ability to generalize. (Hawkins, 2004). 

The following factors make networks more susceptible to Overfitting: (Gluon 

Contributors, 2017, Chapter 2) 

- The number of degrees of freedom: This is the number of tunable parameters 

in a Neural Network. If this number is higher, the network is more susceptible to 

Overfitting. 

- The value range of the weights: If the range the weights can take on is wider, 

networks become more susceptible to Overfitting. 

- The size of the training dataset: If the training dataset is small, the network is 

more susceptible to Overfitting, because the bigger the training dataset, the 

harder it is for the network to be over adjusted towards a big number of samples. 

A way to measure the performance of a network and its output model and thus see if 

Overfitting is a problem or not, is to look either at the accuracy or error measure of 

each epoch and training. These values show the percentage of the trained and 

evaluated input datasets, which have been correctly predicted. For each epoch, there 

is an accurate measure for the training dataset as well as for the validation dataset. If 

the accuracy of the validation dataset does not change significantly anymore, but the 

one of the training dataset still does or if the accuracy of the training dataset grows 

significantly faster than the accuracy of the test dataset, the following epochs will likely 

lead to an output model which experiences Overfitting. (Chollet, 2017a, Chapter 4.4) 
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There is a family of techniques and measures to counteract Overfitting, which is called 

Regularization. Regularization consist of the following techniques and measures: 

(Gluon Contributors, 2017, Chapter 2) 

- Making the model less complex by decreasing the amount of parameters. For 

example by leaving out certain input features that we know are not or less 

relevant for the task. 

- Forcing the model to keep the weights small or limit the speed of their growth, 

for example by using a different loss function. 

- Reinitializing the parameters if needed. Because the weights are randomly 

assigned, a network which experiences Overfitting could theoretically be the 

product of an unlucky set of initial weights. 

- Using a special layer type called dropout layer, which disables certain neurons, 

thus allows the network to focus on other features. 
 

Figure 4: Comparison of performance gain with an increase of training data size - based 
on (Ng, 2018, p. 12) 

 

Current areas of applications for Deep Learning include: (Gluon Contributors, 2017, 

Chapter 1; Pouyanfar et al., 2018) 

- Face recognition - Speech recognition 

- Object recognition - Autonomous driving 

- Gesture recognition - Machine Translation 

- Natural language processing - Ad Targeting 

- Information retrieval - Handwriting Transcription 
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- Data analysis 
 

Deep Learning has been shown to perform equal or better in many of the above- 

mentioned areas of application (Collobert et al., 2011; Schmidhuber, 2015, pp. 18–25). 

Opposed to traditional methods the performance of Deep Learning depends heavily 

on the size and quality of the input dataset. The performance of Deep Learning 

increases more with a growing input dataset, than it does with traditional methods. With 

smaller input datasets the difference in performance are generally not significantly 

better (Ng, 2018, p. 12). 

2.2.1 Deep Learning Modes 

There are three different modes of Deep Learning: supervised, semi-supervised and 

unsupervised Deep Learning. Supervised Deep Learning consists of a known input 

and output, thus tries to find patterns in the input data of a certain output category, 

which isolates it from data of a different output category. Apart from categorization 

supervised learning is also used for regression and ranking of data. In unsupervised 

Deep Learning on the other hand, only the input data is known, without any 

classification or labels and the result is a classification based on categories found by 

the learning algorithm. This process is called clustering. Semi-supervised Deep 

Learning is a hybrid of both supervised and unsupervised Deep Learning. Usually in 

semi-supervised Deep Learning, there is a small set of input data with corresponding 

output data, as well as a larger set of uncategorized input data. Because of the high 

requirements on computing power, unsupervised learning was long neglected and only 

saw an increase in popularity in the last decade, with increasing and affordable 

computing power and advancements in Deep Learning research. (Schmidhuber, 2015) 

Supervised learning includes the following tasks: (Gluon Contributors, 2017, Chapter 

1) 

- Classification: In classification we look for feature vectors, which can be 

certain shapes or colors in a picture or the grammar in a sentence. With the help 

of these feature vectors the data can be split into two or more classes. If there 

are only two classes, it is called a binary classification. A classification with more 

than two classes is called a multiclass classification. Examples for classification 

tasks are detection of cancers in CT images or a spam detection system for E- 

mail systems. 
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- Regression: In classification we ask the questions “what?” while in regression 

we ask “how many?” or “how much?” Here we try to predict a numerical output 

by applying statistical methods to a numerical input. 

- Tagging: Tagging is a special form of multiclass classification, which allows one 

input to have multiple classes. An example for this is image or text tagging. 

- Search and ranking: Supervised Machine Learning can be used to predict a 

ranking to a certain set of items. As an example the field of information retrieval 

deals with scoring, retrieving and ranking data. 

- Sequence learning: In sequence learning we take a sequential input, such as 

a video, which consists of a number of sequential frames, where it is important 

to look at the context and thus the connection between each of them. Machine 

translation and speech recognition are also sequence learning tasks. 

Examples for unsupervised Learning tasks are: (Chollet, 2017a, Chapter 4.1.2) 

 
- Dimensionality reduction: Sometimes before a dataset is classified or 

analysed it needs to be cleaned and its size needs to be reduced. One way to 

do this is with Dimensionality Reduction, which reduces the amount of variables, 

by identifying the unimportant ones. 

- Clustering: The aim of clustering is to group similar samples together. An 

example for Clustering is to find different customer segments in a customer 

database, based on not known features, to get a better understanding of 

similarities between different samples or groups of samples. 

There are two other less prominent modes of Deep Learning called Reinforcement 

Learning and Self-supervised learning. In Reinforcement Learning the network will get 

inputs about its environment and tries to maximize some kind of reward by improving 

its actions. This is for example used in autonomous video gaming. Self-supervised 

Learning is similar to supervised learning, but it generates its own labels, usually by 

using heuristic methods on the input dataset. (Chollet, 2017a, Chapter 4.1) 

2.2.2 Deep Learning Architectures 

Among the most common Deep Neural Network architectures the two architectures 

Convolutional Neural Networks and Recurrent Neural Networks have been shown to 

be most successful for supervised NLP Tasks, thus they and some variations and a 

combination of them will be used and compared in this thesis. (Pouyanfar et al., 2018) 
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The following chapters contain a description of the functionality of these architectures 

as well as examples of how a model, which use these architectures, could look like 

and their fields of application. 

2.2.2.1 Convolutional Neural Network (CNN) 

A Convolutional Neural Network, also known as CNN or ConvNet, is a class of 

networks, which work with pattern recognition in data, which is represented in a grid- 

like form. This makes CNNs especially suitable for images, because pictures can be 

processed by representing each pixel as a value in a grid. In addition to CNN layers a 

CNN based network architecture typically consists of fully connected layers and 

pooling layers. Each CNN layer is typically followed by one pooling layer and the output 

layer is usually preceded by one or multiple dense layers. The reason for including 

pooling layers is to decrease the size of the network. Among the different types of 

pooling layer, max pooling layers have been shown to work best for CNN-based model 

architectures. (Lecun, Bottou, Bengio, & Haffner, 1998), (Chollet, 2017a) 

 

 
Figure 5: A typical CNN architecture. In deeper CNN-based networks, the CNN layer and max pooling 

layer combination is repeated multiple times - based on (Lecun et al., 1998) 

 

A CNN is a dense Neural Network, which means that each neuron in one layer is 

connected to each neuron in the following layer. Fully connected layers are used to 

process data in different tensor shapes. Data in two dimensional tensor shapes is 

usually processed by some kind of fully connected network, such as a CNN. In Keras, 

which is the Deep Learning Framework used in this thesis, there are different types of 

CNN layers that can be used, depending on the amount of dimensions the shape of 

the data has. (Chollet, 2017a) 

By extracting feature maps a CNN can perform a feature vector identification, which 

corresponds to the predefined output category. The disadvantage of CNN is their 

scalability, because CNN layers are fully connected layer, the needed computational 

resources to compute the trainings increases highly with deeper models and larger 

datasets (Fukushima, 1988; Lecun et al., 1998). The advantages of a CNN layer over 

a dense layer is, that features learned by a CNN layer are translation invariant, which 
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means that after features are initially identified, it can be recognized in any other 

location of other samples. The second advantage of CNN layers over dense layers, is 

that CNN layers can learn patterns through multiple layers. For example the first layer 

learns one characteristic of a certain feature, while the second layer learns more 

specific characteristics of this same feature. This allows CNN-based networks to detect 

more abstract features, when multiple CNN layers are stacked on top of each other 

(Chollet, 2017a). 

 
 
 

Figure 6: A visualization of how CNN networks can learn patterns through multiple layers in image 

recognition – based on (Chollet, 2017a, fig. 5.2) 

 

The most well-known use case for CNN networks is in image and object recognition, 

because of its abilities to learn about single features through multiple layers. This is 

because visual data consists of many small shapes and different colors, which then 

can be connected to form a certain object. The AlexNet model, which is inspired by 

and build according to the model described above, achieved a historically high 

performance in 2012 in the ImageNet challenge, which is seen as the reference 

challenge in the field of image recognition. Another parameter, which made AlexNet 

more successful than its predecessors, was that it could overcome the Vanishing 

Gradient problem. Vanishing Gradient is a problem occurring in both CNN and RNN 

architectures, where the gradient gets so small, that it is preventing the weights from 

updating their values and thus stops the learning process of the network. AlexNet 
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overcame the Vanishing Gradient problem by using the ReLu activation function 

instead of Sigmoid functions (Krizhevsky, Sutskever, & Hinton, 2012). CNN has also 

shown to be efficient at solving NLP problems, primarily sentence classification and 

speech processing (Abdel-Hamid et al., 2014). 

2.2.2.2 Recurrent Neural Network (RNN) 

A Recurrent Neural Network, also called RNN or Feedback Neural Network are a 

subset of Recursive Neural Networks, as well called RNN or RvNN. RvNN can make 

predictions in tree-like structures. RNNs on the other hand work with sequential 

information, since they can store information of past sequences. This allows a RNN to 

see the full context of a single feature, instead of just the feature itself. Because of this 

mechanism, they are most commonly applied in text and speech processing and 

recognition. Since words change their meaning depending on their context, the 

networks short-term memory enables it to see and include this context. The context in 

this example would be the words before and after the words that are being processed, 

as well as its position in the sentence, instead of just the word itself. 

 

Figure 7: A visualization of a simple RNN model. The recurrent connection allows the network to 

remember information of past sequences – based on (Chollet, 2017a) 

 

The disadvantage of RNNs is how difficult it is to store memories over long periods of 

time, because of their sensitivity to big chances during training in their short-term 

memory. This is due to a problem called Vanishing Gradient Descent or Vanishing 

Gradient problem, to which RNNs are susceptible to, due to the inheritance of the 

gradient because of their short-term memory function. If the gradient is small in a 

previous neuron, it influences the gradient of the following neuron, thus it will be even 

smaller. This leads to an exponential decrease or growth of the gradient, which makes 
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the network stop improving (Y. Bengio, Simard, & Frasconi, 1994). This issue halted 

progress for RNN-based networks until 1997 until it was solved by introducing memory 

blocks in the networks recurrent connections (Hochreiter & Schmidhuber, 1997; Lecun 

et al., 1998). 

These memory blocks were named gates and replace the summation units in each of 

these layers. They are mechanisms, which decide which information to forget or add 

to the memory. By doing that the network can remember the important and forget the 

unimportant information and make predictions based on that data (Glorot & Bengio, 

2010). The two most relevant architectures with this gate mechanism are called “Long 

Short-Term Memory” (LSTM) and “Gated Recurrent Unit” (GRU). The downside of 

adding these gate mechanisms is that they use significantly more processing power 

because of their complexity compared to a simple RNN (Cho et al., 2014; Li & Wu, 

2015), (Pouyanfar et al., 2018). 

The LSTM solves the vanishing gradient problem by using an input, forget and output 

gate in each sequence. The input gate defines how much of the new information should 

be kept, the forget gate defines does the same for the existing data in the memory and 

the output gate decides what of the current memory state should be shared with the 

following sequence. GRU solves the problem with just two gates, a reset gate and an 

update gate. The update gate is responsible for deciding to what degree the memory 

is being updated, while the reset gate is responsible for resetting the computed state 

by forgetting the previously computed state. (Chung, Gulcehre, Cho, & Bengio, 2014) 

LSTM has shown to be efficient at solving tasks, which require looking at long-term 

dependencies (Graves, 2012, Chapter 4). Because of the similar structure and 

functionality as well as similar results for tasks based on long-term dependencies, it 

can be assumed, that this is also true for GRU. GRU, which is a recently developed 

architecture, seems to be a more efficient way of achieving similar results for these 

tasks than with LSTM. There is no clear evidence towards which of the two gate 

mechanisms is superior in their performance, but both of them clearly outperform a 

vanilla RNN, while GRU is generally faster (Chung et al., 2014). 

2.2.2.3 Recurrent Convolutional Neural Network (RCNN) 

Recurrent Convolutional Neural Networks are a combination of RNN and CNN. RCNN 

have been shown to perform better than RNN and CNN in both object recognition and 
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text classification (S. Lai, Xu, Liu, & Zhao, 2015; Ming Liang & Xiaolin Hu, 2015). RCNN 

can be implemented with both LSTM and GRU RNN architectures, as well as RNN 

layers without a gate mechanism. An alternative name for the LSTM RCNN is LRCN 

(Donahue et al., 2017). 

 

 
Figure 8: A typical RCNN model based on (Li & Wu, 2015) 

 
The input layer in a RCNN model is usually followed by the CNN layer and a max 

pooling layer, as described in chapter 4.2.3.1, which is followed by the RNN layer, a 

dense layer, as well as the output layer. The output layer is generally either a dense 

layer or if needed a dropout layer. (Li & Wu, 2015) 

2.2.2.4 Bidirectional Recurrent Neural Network (BRNN) 

A special type of RNN are Bidirectional Recurrent Neural Networks also called BRNN, 

which not only store information from past sequences, but also from future sequences. 

This is done by training the network in both time directions simultaneously, by splitting 

the state of neurons in a RNN network, so that one part is responsible for the positive 

time direction and the other for the negative time direction. The outputs of both parts 

of the network are usually merged after each layer, although summation after multiple 

layers is also a possibility. (Schuster & Paliwal, 1997) 

This structure provides the advantage of increased accuracy and an increase in 

detected contextual features (Chollet, 2017a, p. 207). Since BRNN violate causality, it 

cannot be used on temporal data, which cannot provide this, such as navigation tasks 

or financial predictions. For spatial data, such as the data used in this thesis, on the 

other hand, this is not a problem (Graves, 2012, Chapter 3.2.4). 

The architectures used for the BRNN Deep Learning models are the same as for other 

RNN models, since apart from their bidirectional layout, their functionality and 

architecture is the same. 
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Figure 9: Visualization of a Bidirectional RNN. The recurrent connections are shared in both the forward 

and backward direction – based on (Schuster & Paliwal, 1997, fig. 1) 

 

2.2.3 Neural Network Layers 

A network or model consists of a sequence of layers. On top of the above-mentioned 

Deep Neural Network architectures, the following layer types are used to build and 

enhance the networks and their performance. The below-mentioned types are only a 

selection of many more layer types being used in a Deep Neural Network. 

2.2.3.1 Dense Layers 

A dense layer, also referred to as fully connected layer, is a regular and linear Neural 

Network layer, which is densely connected, which means that each neuron receives 

inputs from every other neuron in the previous layer and each of the inputs is 

connected to each of the outputs by a weight. This layer is usually followed by a non- 

linear activation layer function. (Chollet & others, 2015) 

2.2.3.2 Activation Layers 

Activation layers compute which neurons to fire by applying an activation function on 

the respective input (Chollet & others, 2015). An activation function calculates the 

weighted sum of its inputs and adds a bias. 

The following is a selection of activation functions: (Glorot, Bordes, & Bengio, 2011; 

Nwankpa, Ijomah, Gachagan, & Marshall, 2018) 
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- Step function: The output of a step function, also called a binary function, is 

always either 0 or 1, depending on the value of x. A step function is not 

applicable to Deep Learning, because the Gradient Descent algorithm cannot 

update the weights due to their binary nature, thus cannot improve its 

performance. 

- Linear function: Contrary to a step function, a linear function is not restricted 

in its range. Linear functions are rarely used because their linearity limits their 

usefulness for Deep Learning applications. However, their advantage is, that 

they offer high performance and are easy to optimize with Gradient Descent 

methods. The Rectified Linear Unit activation function, also called ReLU 

function, is a nearly linear function, thus benefits of these properties of linear 

functions without running into a Gradient Descent problem, by rectifying values 

below zero, by making them 0, thus making them unusable to the network. 

- Logistic function: A logistic activation function has a range between 0 and 1. 

It has the shape of the letter S. The problem with logistic activation functions is, 

that they do not work well with Gradient Descent. This is because they tend to 

be zero-centered, which makes the network too sensitive to the Gradient 

Descent problem. An example of a logistic activation function is the Sigmoid 

function. Sigmoid functions are mostly used in feedforward Neural Networks to 

get a binary predicting probability based output. Another logistic function is the 

Softmax function, which compared to the Sigmoid function is mostly used for 

multiclass classification tasks. 

- Hyperbolic tangent function: An example of a hyperbolic tangent activation 

function is the Tanh function. The Tanh function has a range of -1 to 1 and has 

been shown to perform better than the Sigmoid function. The problem with the 

Tanh function is, that they can only achieve a gradient of 1 if the input value is 

0, which renders some neurons unusable by setting their weight to 0. This is a 

condition called dead neurons. The Tanh function is mostly used in language 

modelling and speech recognition. 

The most commonly used activation functions used in Deep Learning are Sigmoid, 

ReLU and Softmax. The current trend is to use ReLU for the hidden layers to 

counteract the gradient descent problem and Softmax or Sigmoid for the output layer. 

Which one of the latter two is used for the output layer, depends on the desired output. 
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Sigmoid is used, if the output is a binary classifier and Softmax is used if the output is 

a multiclass output. (Nwankpa et al., 2018) 

In Keras activation functions can either be used by adding an activation layer to the 

network or by adding the activation argument to any forwarded layer. Keras supports 

all of the most well-known activation functions and allows the import of custom 

activation functions. (Chollet & others, 2015) 

2.2.3.3 Dropout Layers 

The purpose of a dropout layer is to counteract Overfitting. Dropout layers have 

shown to be successful in counteracting Overfitting in both CNN and RNN based 

networks. A dropout layer does this by setting the output of a selection of single 

neurons to 0. This makes neighboring neurons more sensitive and increases the size 

of changes in the weights of these neurons. The dropout layer is inserted before a 

linear or nearly linear activation function. (Srivastava et al., 2014) 

 

 
Figure 10: Example of a Neural Network with two hidden layers after applying dropout – crossed 

neurons have been dropped, so that others gain more sensitivity – based on (Srivastava et al., 2014, 

fig. 1b) 

 

The original paper applies the dropout function on each dense layer before the output. 

The same can be applied to LSTM networks (Zaremba, Sutskever, & Vinyals, 2014). 

Recent research shows, that it is also possible to use dropout layers after the activation 
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layer of a CNN layer, although at a smaller rate of 0.2 instead of 0.5 (Park & Kwak, 

2017). The dropout layers take a 1-dimensional tensor as an input, so a flatten layer 

has to be used beforehand to adjust the tensors if they are higher dimensioned. 

2.2.3.4 Pooling Layers/Global Max Pooling Layers 

Max pooling layers are used to aggressively downsample networks and thus to reduce 

the number of neurons to compute. Usually pooling layers reduce the amount of 

neurons by a factor of 2. This down sampling process increases the network’s ability 

to generalize features. In Keras there are different pooling layer types, which have to 

be chosen depending on the dimensionality of the tensors being forwarded by the 

previous layer. Additionally pooling layers can either be global, average and/or max. 

Global pooling layers down samples the network to one single value, which is the most 

prominent feature. Average pooling layers downsample the network to the average 

value. Max pooling layer on the other hand downsample a network to its maximum 

values. (Chollet, 2017a) 

In Keras the following parameters are available for global max pooling layers: 

 
- pool_size: This defines the size of the max pooling windows. 

- strides: This defines the factor, by which the networks should be downsampled 

by. 

- padding: If this is set to “valid”, it ensures both that the data does not shrink in 

its dimensionality and that input data on the border of the input grid (for example 

in a vectorized image representation) is not disadvantaged, because they get 

looked at less thoroughly, because their position is part of less filter regions. 

- data_format: This defines in which order the dimensions of a tensor are being 

outputed. This is relevant if the input data is in the shape of a 3D tensor. 

The output of a global max pooling layer is defined by the value given in the parameter 

data_format. (Chollet & others, 2015) 

2.2.3.5 Word Embedding Layers 

A Word Embedding is a vector representation of words and their semantic similarity 

(Mikolov et al., 2013). Word Embeddings have been shown to improve the 

performance of NLP tasks in Deep Learning (Socher et al., 2013). There are two ways 

in which an embedding can be implemented in a Deep Neural Network. The first one 

is to use an embedding layer, which makes the model use an unstructured random 
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vector that then will be adapted to the task. The embedding layer requires integer 

encoded input data, so that each word in the input data is assigned to a unique 

identifier. The quality of these embeddings depend strongly on the size of the training 

set. If not enough data is available to train a Word Embedding adapted to the task, the 

second possibility is to use a pre-trained Word Embedding. A Deep Learning model 

usually starts with one of the above-mentioned embedding layers (Chollet, 2017a). 

The embedding layer in Keras can be used as a layer in a network or as a stand-alone 

module. If it is used as such, the Word Embedding can be saved for later use, without 

having to rebuild it with each new network. The embedding layer in Keras also allows 

to use pre-trained generalized Word Embeddings. The embedding layer also has 

weights on its own and the output is a 2D vector, where each word is represented by 

a unique integer. The embedding layer must specify the following three parameters: 

- input_dim: This is the number of words contained in the embedding. 

- output_dim: This is the size of the output vector. 

- input_length: This is the size of the input data in words. 
 

There are two popular methods of creating Word Embeddings from a text dataset. The 

first one is called Word2Vec, the second one GloVe. Both of them are unsupervised 

learning algorithms to extract vector representations of text data. (Pennington, Socher, 

& Manning, 2014), (Mikolov et al., 2013) 

In Keras it is possible to use GloVe as well as Word2Vec Word Embeddings. To use 

Word2Vec the library Genism has to be used. While both algorithms compute the 

models in a different way, the output model is only slightly different and can be 

converted if the Deep Learning Frameworks does not support them. (Chollet & others, 

2015) 

2.2.4 Deep Learning Data Representations 

There are different ways in which input data can be represented in Deep Neural 

Networks, mostly depending on the kind of input data provided. The data structure in 

Deep Learning is always a so called tensor, which is a container for numbers, that is 

used as a representation of the input data in a Deep Neural Network. A vector is usually 

defined by its number of axes, its shape and its data type. The following list shows the 

different types of tensors according to their dimensionality: (Chollet, 2017a, Chapter 

2.2) 
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- Scalars: A scalar is a tensor that contains only one value, thus is zero- 

dimensional. 

- Vectors: A vector is a tensor which contains values on one axis, thus is a one- 

dimensional tensor. 

- Matrices: A matrice is a vector which contains two axes, thus is a two- 

dimensional vector. 

Additional axes can be added to create multi-dimensional tensors. The shape of a 

tensor is defined by the size of each axis. The shape of a tensor is usually depicted by 

round parenthesis, with the amount of numbers being the dimensionality and the size 

of each axis being the numbers. For example the vector (3, 5) is two dimensional, 

because there are two numbers within the parenthesis, thus the vector is a matrice. 

The size of the two axes is 3 and 5 respectively. The data type is defined by the type 

of data contained in a tensor. The most commonly used data types in Python are 

float32, uint8 and float64. (Gluon Contributors, 2017, Chapter 1) 

 
2.2.5 Deep Learning Frameworks 

 

There is a multitude of different Deep Learning frameworks. The following chapters 

give an overview over a selection of frameworks. Deep Learning frameworks come in 

two main forms: low-level and high-level frameworks. 

2.2.5.1 Low-Level Deep Learning Frameworks 

Low-level Deep Learning Frameworks need a lot of coding experience and in-depth 

understanding of the underlying mechanisms to be applicable. On the other hand, this 

allows the developer to fine tune even small details, which makes them well suited for 

research and for the development of new Deep Learning models from scratch. 

The following table shows an overview over the most popular low-level Deep Learning 

frameworks. 

 

Framework Written in License 

Tensorflow C++, Python Apache License 2.0 

Torch C, Lua BSD License 

Theano Python BSD License 

MxNet C++ Apache License 2.0 

Deeplearning4J Java Apache License 2.0 
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Additional information about each framework can be found within the following 

chapters. 

2.2.5.1.1 Tensorflow 

Tensorflow is a Machine Learning library which is being developed by the Google Brain 

team and has been published under an Apache License 2.0. Tensorflow is being used 

as the main AI library for many Google Services, such as Google Street View, Google 

Translate, Gmail, Google Photos and Google Search and is being used as the backend 

for many High-level Deep Learning frameworks. Tensorflow is written in Python, but 

uses both Python and C++ in its implementation. Interfaces exist for Python, C, C++, 

Java and Go (Martin Abadi et al., 2015; Tensorflow, 2019). In 2017 Keras has gained 

official support of the Google Brain team as the first high-level Deep Learning 

Framework, making it effectively Tensorflows main interface, although alternatives 

exist (Chollet, 2017b). 

2.2.5.1.2 Torch/Pytorch 

Torch is a Machine Learning library which has been developed by Ronan Collobert, 

Koray Kavukcuoglu and Clement Farabet and is being maintained by an active 

community of developers. Torch gained popularity by being the main Machine Learning 

library being used by Uber, Twitter and Facebook. Facebook’s Artificial Intelligence 

research team developed Pytorch as an API for torch, to simplify its usage. Torch is 

mainly implemented in C and can be used using C, C++ and Lua, while Pytorch can 

be used with Python and is implemented in C++ and Python. Both Torch and Pytorch 

have been published under a BSD License. The advantage of Pytorch is that a regular 

debugger can be used. The library is well suited for fast prototyping. (Torch 

Contributors, 2019) 

2.2.5.1.3 Theano 

Theano is a Python library for mathematical calculations with multi-dimensional arrays. 

Theano is not inherently a Machine Learning library, but can be used for both Machine 

Learning and Deep Learning. Theano sees itself as an improved version of the Python 

library NumPy, which has been used as the foundation for its development. They 

added further functions to the original numpy library, which also support the rapid 

development and implementation of Machine Learning Algorithms. Theano has been 

published under a BSD-License. (Theano Development Team, 2017) 
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2.2.5.1.4 Apache MxNet 

Apache MxNet is a scalable Deep Learning Framework that was developed by the 

Apache Software Foundation and has been published under an Apache License 2.0. 

MxNet supports a multitude of different programming language such as Python, C++, 

Julia, Matlab and many more. The most prominent API is the Python interface Gluon. 

(Apache Software Foundation, 2019a) 

2.2.5.1.5 Deeplearning4J 

Deeplearning4J, also known as DL4J and Eclipe Deeplearning4J, is short for Deep 

Learning for Java. Because this library uses Java, it is often implemented as part of 

Android applications. It has been published under an Apache License 2 and is being 

developed by the company Skymind, a software firm based in San Francisco. (Eclipse 

Deeplearning4J developement team, 2019) 

2.2.5.2 High-Level Deep Learning Frameworks 

High-level Deep Learning frameworks do not require advanced coding skills and allow 

the developer to build Deep Learning Networks within a much shorter amount time 

than low-level Deep Learning frameworks, which make them useful for quick 

prototyping. 

The following table offers a summer over all High-level Deep Learning frameworks 

 
Framework Backend API Language License 

Keras Tensorflow, Theano, CNTK Python MIT License 

Gluon MXNet Python Apache License 2.0 

Sonnet Tensorflow Python Apache License 2.0 

Swift for Tensorflow Tensorflow Swift Apache License 2.0 

PyTorch Torch Python BSD License 

 
 

Additional information about each framework can be found within the following 

chapters. 

2.2.5.2.1 Keras 

Keras is an Open Source Deep Learning framework in Python. Keras was originally 

intended for researchers, enabling them to experiment and prototype with Deep 

Learning with ease and in a user-friendly way. Keras is published under an MIT 

License. Keras provides pre-defined building blocks based on low-level Deep-Learning 
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frameworks such as Tensorflow. While Keras is part of Tensorflow as its main API, it 

sees itself as an API for other low-level frameworks, such as Theano and CNTK. By 

using this pre-defined building blocks, certain parameters such as the shape of input- 

tensors in each layer, are being automatically adapted to the model used. (Chollet & 

others, 2015) 

2.2.5.2.2 Gluon 

Gluon is an interface for the Apache MXNet framework, which can be manipulated 

using Python. Gluon is an Open Source library, which is also published under an 

Apache License 2.0, since it is part of the Apache MxNet project. Like most high-level 

Deep Learning frameworks Gluon offers building blocks to easily build Neural 

Networks, without needing technical knowledge, while still maintaining a high 

performance. (Apache Software Foundation, 2019b) 

2.2.5.2.3 Sonnet 

Sonnet is an alternative interface for Tensorflow, which can be used with Python. The 

main principle and main advantage behind Sonnet is that the representation of 

modules is done in Python objects, instead of just being an interface. This helps if 

modules need to be changed after construction, without changing their weights. Other 

than that Sonnet offers, like most other high-level Deep Learning frameworks, an easily 

understandable way to implement networks. (Reynolds et al., 2017) 

2.2.5.2.4 Swift for Tensorflow 

Swift for Tensorflow, also called S4TF, is another interface for Tensorflow, which can 

be accessed by using the programming language Swift. This is developed by the 

Google Brain team and the reasons for making this framework on top of Keras, is 

because of the challenges that some Tensorflow developers identified while working 

with Python. These challenges are performance, concurrency, deployment for mobile 

as well as the fact that often Python prototypes have to be rewritten in the C++ API for 

production, and the lack of possibility to write custom operations in Python. (Wei, 2018) 
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3. Methodology 

The methodology of this thesis consists of four steps: 

 
1. Literature review: The literature review consists of the following steps: 

a. Builiding a basic understanding of Deep Learning. 

b. Identification of the state of the art in text classification with Deep 

Learning and identification of relevant Deep Neural Network models. 

c. Identification of configurations and architectures for the relevant Deep 

Neural Network models. 

d. Identification of common problems in the application of Deep Learning 

and possible ways to circumvent or solve these problems. 

The literature review was conducted using primarily the following sources: 

 
- portal.acm.org: The ACM (Association for Computing Machinery) digital 

library contains a comprehensive collection of publications focused on the 

field of computing, including many important publications in the field of Deep 

Learning. 

- sciencedirect.com: Science Direct is the database for scientific 

publications from the Elsevier publishing company. Science Direct contains 

books and journals across many scientific fields. 

- ieeexplore.ieee.org: IEEE Xplore is a research database for journal articles 

in the following disciplines: Computer science, electrical engineering and 

electronics. 

2. Development: Development of relevant strategies and Deep Neural Network 

models and configurations for text classification of integrity risks. Additional 

configurations that are subject to tests are the amount of epochs (iterations 

through all the training data), the size and quality of the training and testing 

dataset and the type and size of the Word Embeddings. 

3. Implementation: Implementation of relevant Deep Neural Network models and 

configurations and testing of the implemented configurations to improve their 

performance. 

The implementation of the relevant Deep Neural Networks was done using the 

following tools: 
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- Python, Keras and Tensorflow: For the implementation of the networks, 

Keras has been chosen as a high-level Deep Learning, with Tensorflow as 

a low-level Deep Learning Framework backend. The reason for choosing 

Tensorflow is because of the big community, which offers technical support 

as well as many examples, which can be used as a template. Another reason 

for using Tensorflow, is because its main API is Keras, which can be used 

with Python. Python is a high level programming language that has been 

used for both the preprocessing of the input data as well as for the 

implementation of the Deep Neural Network models. Both Python and Keras 

made the implementation of the models a comparatively easy task, because 

its syntax is easy to understand and the building blocks which Keras provide 

reduce the amount of micromanaging parameters greatly. 

- Jupyter Notebook and Github: Jupyter Notebook is an interactive web- 

application which allows to edit, run and order code in a clear and convenient 

way. It also increases organization by storing outputs and results in the same 

file as the code. Github has been used to make the final code available to 

the public. 

Additionally the following resources have been used as a basis for the 

implementation: 

- Keras team Github: The Keras team published examples of Deep Learning 

implementations on their Github page (keras-team, 2019). These were used 

as a template for most of the model implementations. Specifically the 

examples using the imdb-dataset have been used, since it is also a binary 

classification task. 

- Kaggle: Kaggle is an online platform, where researchers and data scientists 

can upload submissions for machine learning challenges, which are then 

available to the public. Thus, this platform offers a wide variety of tested and 

commented code samples, especially for Keras. (Kaggle Inc., 2019) 

- Deep Learning with Python: The book “Deep Learning with Python” by 

François Chollet has been used to get to know the basics of Deep Learning 

and adapt and fine-tune the individual layers in the implementations. 

(Chollet, 2017a) 
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4. Evaluation: Comparison of the results for each architecture, followed by 

analysis and discussion of the results. If results do not coincide with what the 

literature suggests, additional tests will be conducted with different parameters 

according to the steps mentioned above. 

The above-described process is an iterative process. After the results have been 

compared and analyzed, the process starts over again by implementing the lessons 

learned in the prior implementation. 

 
 

 

 
Figure 11: Vizualization of the research design as an iterative processs 

 
3.1 Description Of The Task 

The task is to classify news articles into the following two categories: 

 
1. Integrity-risk news articles 

2. Non-integrity-risk news articles 
 

This is a binary classification problem, thus supervised learning will be used to solve 

the task. The input data consists of text files, thus vectors, one-dimensional tensors, 

will represent the data. This means that the layers either need to be able to take in 

vector data or alternatively that the dimensionality of the data needs to change before 

being processed by the layer, for example by adding a flatten layer. The answers 

provided to the input data are labels of the two above mentioned categories. 
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3.2 Description of the data & data preprocessing 

The input data consists of german text files and the focus is on corruption based 

integrity risks. It consists of two major datasets, one which was automatically extracted 

and one that was manually checked. Both datasets have been put together by the 

Integrity Risk Monitor project team. The following three datasets are a mix of these two 

datasets and have been used for the benchmark: 

Dataset 1: This dataset consists of a total of 1385 positive and 1385 negative samples. 

These samples have been automatically extracted using keyword extraction, thus may 

contain false-negatives or false-positives as well as unrelated documents. Since the 

data has been collected by using keyword extraction, the difference between the 

positive and negative datasets are more obvious and the keywords used for the 

selection are obvious features, which the networks most likely train to detect. 

Dataset 2: This dataset consists of a total of 503 positive and 721 negative samples. 

These samples have been automatically extracted and then manually checked by the 

project partners, to minimize wrongly classified documents in either of the pools as well 

as to have a dataset with more similar pools, with ambiguous entries in both, thus 

making them harder to classify. 

Dataset 3: This dataset is a mix of the two other datasets, thus contains both 

ambiguous samples in both the negative and positive dataset, as well as more obvious 

samples of the first dataset. The composition of this dataset is as follows: 503 positive 

and 721 negative samples manually picked and 1118 positive and 900 negative 

samples picked through keyword extraction. There is a total of 1621 positive and 1621 

negative samples in this dataset. 

Before training the input data is cleaned by using the Python library Natural Language 

Toolkit, also called NLTK. The aim of data cleaning is to remove noise and errors in 

the input data. The following steps have been taken as part of the data preprocessing: 

- Special characters such as punctuation characters were removed either by 

just leaving them out or by inserting a space. 

- Stopwords have been removed from the custom Word Embedding, because 

only a pre-defined amount of words are being included in the custom 

embedding and processed by the Neural Network, which might be 

problematic if stopwords were included. The reason is because they might 
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take up a significant amount of the Word Embedding, which are not relevant 

to the output and could potentially lead to the detection of features, which do 

not hold any significance. This has not been done for the pre-trained Word 

Embedding, because stopwords, which are not contained in the pre-trained 

Word Embedding, are not included and thus get cleaned out. The pre-trained 

Word Embedding already contains many stopwords, but sets the value of 

their weights to 0, if they get removed beforehand. To identify stopwords the 

german NLTK corpus was being used. 

3.3 Deep Neural Network Models 

The result of the implementation are a mixture of the in chapter 4.2 mentioned Deep 

Neural Network types and layer types. For this thesis, a supervised approach is 

suitable, since the aim is to categorize a dataset into known and predefined categories. 

In the following chapters the choice of Word Embeddings and Deep Neural Network 

models and their layers will be discussed. 

3.3.1 Word Embeddings 

Two different Word Embedding types have been implemented. The first one is a 

custom Word Embedding, build by using the input text data. This Word Embedding is 

limited to the top 500 words, which remained after pre-processing the input data. 

Although further tests with bigger custom Word Embeddings have been conducted, as 

can be seen in chapter 6.4. The second type uses a pre-trained Word Embedding. The 

implementation of both the pre-trained and the custom Word Embedding is based on 

the Github examples of Keras, as well as on a variety of Kaggle entries. 

The pre-trained Word Embedding is a German Word2Vec embedding, which has been 

trained using the German version of Wikipedia as well as a dataset of German news 

from the years 2007-2013 (Müller, 2019). This Word Embedding has been chosen, 

because it was trained using the biggest and most up to date corpus of news articles 

and it is important to have a Word Embedding, which was trained with a corpus similar 

to the training corpus. The Word Embedding contains 60’000 words and has been 

converted into text form and into the GloVe format. 

3.3.2 Network Models 

The following two CNN models are based on the models described in the literature 

review as well as on the examples given by the Keras team. (keras-team, 2019) 
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CNN: This network model is a standard CNN model as described by Lecun et. al. with 

just one CNN layer. The CNN layer uses a ReLU activation function, as is the standard 

for CNN layers in Neural Networks. 

 

 

RCNN: This network model is based on the architecture proposed by Li & Wu using 

an LSTM layer as the recurrent layer. 

 

 

The following RNN models are based on the model architectures proposed by Graves 

(Graves, 2012, Chapter 5.2) as well as on the example given by the Keras team (keras- 

team, 2019). 

LSTM: For this network, the standard LSTM layer of Keras will be implemented. The 

LSTM layer is followed by a dense layer as an output layer. 

 

 
Double LSTM: This network is identical to the regular LSTM model, but with an 

additional LSTM layer. When stacking LSTM layers on top of each other the parameter 

return_sequences needs to be set to the value “True”, because else the second LSTM 

layer does not have a 3-dimensional input. (Chollet & others, 2015) 

 

 
LSTM with dropout layer: The additional dropout layer could potentially allow the 

network to train for longer, without running into an overfitting problem. 

 

 
GRU: For this network, the standard GRU layer of Keras was implemented, followed 

by a dense layer as an output layer. 
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Double GRU: This network is identical to the regular GRU model, but with an additional 

LSTM layer. The return sequences parameter needs to be set to true for the first GRU 

layer, to ensure that the shape of the input for the second GRU layer is correct. 

 

 

GRU with dropout layer: The added dropout layer is added to this model is to 

counteract Overfitting and to see, if there is a difference in accuracy with this 

countermeasure. 

 

 

RNN/Bidirectional LSTM: This model is identical to the standard LSTM, but with the 

LSTM being a bidirectional instead of a unidirectional layer. 

 

 
RNN/Bidirectional LSTM + Dropout: This model is based on the unidirectional LSTM 

and dropout model, with a bidirectional LSTM layer. 

 

 
All of the output layers use a Sigmoid activation function, because the task is a binary 

classification task. All the hidden layers use a ReLU activation function to counteract 

Overfitting. 
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4. Evaluation 

The main problem with the network’s performance was the quality of the data and 

Overfitting. Other potential problems arose because of the Word Embeddings and the 

model architectures. The following chapters discuss the results of the trainings, the 

conclusions and where additional research is necessary. 

4.1 Training Results 

The following chapters list the results for the two Word Embedding types described in 

chapter 5.3.1 and the three datasets described in chapter 5.2. The first value is the 

name of the model, as described in chapter 5.3.2, the second describes the achieved 

accuracy score for the evaluation dataset and the third describes the amount of epochs 

needed to achieve this score, before the output model experienced an obvious 

overfitting problem or stopped improving. Because Overfitting and the halt of 

improvement are relative values, which are not precisely defined in the literature, the 

following values have been set as a measure to define these problems in this thesis: 

- As a measure to define a network, which is not improving anymore, a change 

of less than 0.1% over more than 2 epochs has been chosen. 

- An obvious overfitting problem occurs if the training accuracy increases 

twice as much compared to the training accuracy for more than 1 epoch. 

If one of the above conditions is true, the value before the problem occurred is used 

as an accuracy measure in the following table. The maximum amount of epochs the 

networks were trained for is 10. The results of each specific epoch of each network 

training can be found in the appendix. 
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4.1.1 Test Results Custom Word Embeddings 
 

Model Result/Test Accuracy Number of epochs 

Dataset 1 

CNN 0.9762 1 

RCNN 0.9866 1 

LSTM 0.9783 3 

Double LSTM 0.9743 1 

LSTM + Dropout 0.9815 10 

GRU 0.9865 1 

Double GRU 0.9826 2 

GRU + Dropout 0.9871 5 

LSTM bidirectional 0.9868 3 

LSTM bidirectional + Dropout 0.9875 5 

Dataset 2 

CNN 0.7006 2 

RCNN 0.6942 4 

LSTM 0.6991 3 

Double LSTM 0.7018 4 

LSTM + Dropout 0.7004 2 

GRU 0.7098 3 

Double GRU 0.7029 1 

GRU + Dropout 0.7058 6 

LSTM bidirectional 0.7001 3 

LSTM bidirectional + Dropout 0.6892 3 

Dataset 3 

CNN 0.7704 1 

RCNN 0.7730 1 

LSTM 0.7543 1 

Double LSTM 0.7485 1 

LSTM + Dropout 0.7718 6 

GRU 0.7776 4 

Double GRU 0.7795 7 

GRU + Dropout 0.7778 7 

LSTM bidirectional 0.7783 6 

LSTM bidirectional + Dropout 0.7611 1 
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4.1.2 Test Results Pre-Trained Word Embeddings 
 

Model Result/Test Accuracy Number of epochs 

Dataset 1 

CNN 0.9260 1 

RCNN 0.9567 1 

LSTM 0.9386 10 

Double LSTM 0.8736 1 

LSTM + Dropout 0.9269 4 

GRU 0.7735 1 

Double GRU 0.9386 6 

GRU + Dropout 0.9025 6 

LSTM bidirectional 0.8060 1 

LSTM bidirectional + Dropout 0.7924 1 

Dataset 2 

CNN 0.6906 7 

RCNN 0.6516 3 

LSTM 0.6783 3 

Double LSTM 0.7111 3 

LSTM + Dropout 0.6906 7 

GRU 0.6414 3 

Double GRU 0.6168 1 

GRU + Dropout 0.6352 1 

LSTM bidirectional 0.7234 10 

LSTM bidirectional + Dropout 0.5779 1 

Dataset 3 

CNN 0.8114 1 

RCNN 0.7899 1 

LSTM 0.7778 7 

Double LSTM 0.8079 10 

LSTM + Dropout 0.8171 7 

GRU 0.7793 2 

Double GRU 0.8295 3 

GRU + Dropout 0.9025 6 

LSTM bidirectional 0.8171 10 

LSTM bidirectional + Dropout 0.7215 5 
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4.2 Evaluation Of Quality And Sze Of Datasets 

The difference in size between the datasets is most probably the biggest influence on 

the datasets difference in accuracy and also the reason, why dataset 1 is the highest 

scoring dataset. The quality of dataset 1 is poor due to the way it was extracted. 

Because all of dataset 1 and a part of dataset 3 have been automatically extracted by 

using keyword extraction, it is most likely, that the networks identified the keywords 

used for the extraction as features. The weights of these features are particularly high, 

because this is a distinctive difference between the two datasets. The aim of the task, 

is to differentiate between documents, even if certain keywords might be included both 

in some negative and positive examples, as well as to be able to identify positive 

documents, even if they do not include certain keywords. The output models for this 

dataset are most likely not able to do this anymore. 

On top of that, the content of some negative example is not news content, which 

distorts the accuracy further, because the network might learn to differentiate between 

news and not news documents, instead of integrity and not integrity risks. These 

distortions are not visible in the accuracy of the test datasets, because they have the 

same origin and thus have the same quality as the training dataset. This means that 

the test’s accuracy score does not reflect reality, which is most likely the reason why 

the test accuracy for dataset 1 is that high. 

Dataset 2 on the other hand contains an accurate depiction of a potential news corpus 

containing positive and negative integrity risk samples. Because the dataset has been 

evaluated manually, the quality of the dataset is much higher and the samples are 

harder to categorize, due to their selection not being based on certain keywords. In 

addition, the quality of the negative dataset is much higher, because they were also 

manually selected, thus negative samples are guaranteed to be news articles. Even 

though dataset 2 is the dataset with the highest quality, the performance was lower. 

This was to be expected because of its more ambiguous nature. Also the difference 

between the different architectures was not significant. 

The small size of dataset 2 is most likely the reason for its low accuracy, which could 

lead to the following problems: 

- Smaller datasets are more susceptible to Overfitting. The fact that for dataset 

1 the differences were not significantly bigger and the average number of 
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epochs before Overfitting (6.5 for Dataset 1 and 7 for Dataset 2) were not 

significantly higher, does not support this theory. 

- The size of the dataset does not allow to build a model which has the ability 

to generalize. This is due to the fact that a dataset this small, cannot contain 

all possible differences between positive and negative samples, especially 

considering the fact, that 20% of the dataset is not used to train, because it 

is kept aside for testing. In a big and diverse dataset, features which are not 

descriptive for the task, but are prominent in a small number of files in the 

specific dataset, will be eventually balanced out and thus cleaned out by 

other examples, which do not have these features. In a small dataset these 

features have a much bigger weight and not enough samples to balance 

them out. 

- The test accuracy is calculated only on a very small dataset of 20% and thus 

might be distorted. For 500 positive examples, this is only 100 positive test 

examples. If the test data is poorly chosen and contains all the samples with 

a certain feature, which is not present in the training data, it is not possible 

for the algorithm to learn these features, except by randomly doing so. On 

the other hand, the training dataset might contain most samples with a 

certain feature, which might make the output model too biased towards 

certain features, which are not reflected in the test dataset. 

The above-mentioned reasons were the reason why dataset 3 was created. Dataset 3 

includes both a big amount of easily distinguishable positives and negatives of dataset 

1, as well as the more ambiguous samples found in dataset 2. This offers both the 

advantages of a big dataset, but also counters some of the disadvantages of the low 

quality in dataset 1, by adding samples, which are harder to distinguish. While it is most 

likely still too small to build a model, which can also identify samples from other sources 

with a high accuracy, it might be big enough to simulate a real dataset and thus to 

compare the different models with each other. 
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The following table shows the average accuracy for each dataset: 

 
 Custom Word Embedding Pre-Trained Word Embedding 

Dataset 1 0.9827 0.8835 

Dataset 2 0.7004 0.6617 

Dataset 3 0.7692 0.8054 

Average 0.8175 0.7835 

 
 

4.3 Evaluation Of Overfitting And Regularization 

The CNN and RCNN model started to experience an overfitting problem on average 

after approximately 2 epochs. The RNN models reached their maximum accuracy 

before experiencing Overfitting on average after approximately 4 epochs. The 

evaluation method to identify the accuracy values mentioned in chapter 5.4 was 

accurate for most of the results, with a few exceptions. For example did the CNN model 

with dataset 1 grow further even though the difference between the training accuracy 

and the test accuracy was significant, because the training accuracy started out lower 

than usual. The following table shows the average amount of epochs a network went 

through before experiencing Overfitting on average over all datasets and both Word 

Embedding types. 

 

 
Model 

Epochs before Overfitting 
on average / all datasets 

Epochs before Overfitting 
on average / dataset 3 

CNN 2.2 1 

RCNN 1.8 1 

LSTM 4.5 4 

Double LSTM 3.3 5.5 

LSTM + Dropout 6 6.5 

GRU 2.3 3 

Double GRU 3.8 6.5 

GRU + Dropout 5.2 6.5 

LSTM bidirectional 5.5 8 

LSTM bidirectional + Dropout 2.6 3 

 
 

The deeper RNN networks have shown, that there is a significant difference compared 

to the more shallow and less complex alternative models. The LSTM model showed a 

decrease on average over all datasets, but an increase for dataset 3. The GRU model 

increased both overall and for only for dataset 3, by 1.5 respectively 3.5 epochs. 
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Already an Overfitting problem can be seen in these simple networks, thus it can be 

assumed, that a more complex or deep network might make this problem worse. 

The following regularization steps have been contemplated and applied if they were 

applicable: 

- Dropout Layers: Dropout layers did have a significant influence on the 

amount of epochs, but this only prolonged training for a few more epochs, 

before facing Overfitting again. The only exception to this were the 

bidirectional networks, which scored lower with a dropout layer. 

- Decrease of network size and complexity: The model architectures were 

already as simple as possible, so the problem is most likely not the amount 

of parameters. 

- Size and quality of dataset: As mentioned in the preceding chapter, the 

datasets were quite small, especially dataset 2. Since even after applying 

dropout layers Overfitting was a problem, this is the most likely reason why 

Overfitting occurred. This theory is also supported by the amount of epochs 

until saturation, which on average were higher in the bigger datasets, except 

for the CNN networks. 

- Reinitializing weights: Since Overfitting could just be a product of an 

unlucky set of starter weights, the networks that experienced the most 

Overfitting, were reinitialized and computed again. The difference in 

accuracy was not significant, although in some cases Overfitting set in at a 

later stage. This is most likely because the initial set of weights gets adjusted 

quickly and do not have a big influence on their accuracy. 

4.4 Evaluation Of Word Embeddings 

The difference in accuracy between the pre-trained and the custom Word Embedding 

for dataset 1 and dataset 2 on the other hand is counterintuitive. With dataset 1 the 

custom Word Embedding achieved considerably higher test accuracy than the pre- 

trained Word Embedding. Although with dataset 2 the differences are less significant, 

the pre-trained Word Embedding scored lower than the custom one as well. The 

average score of each Word Embedding for each Dataset can be seen in the following 

table. 



Deep learning for detecting integrity risks in text documents 44 

Churer Schriften zur Informationswissenschaft – Schrift 103 Master Thesis Kalbermatter 

 

 

 
 
 

 Custom Word Embedding Pre-Trained Word Embedding 

Dataset 1 0.9827 0.8835 

Dataset 2 0.7004 0.6617 

Dataset 3 0.7692 0.8054 

Average 0.8175 0.7835 

 

 

A pre-trained dictionary should be more efficient for smaller datasets, while a custom 

Word Embedding should be more efficient for bigger datasets. This is because a 

custom Word Embedding is adapted to a specific dataset, but it can only be specific 

enough, if the dataset is large enough. A pre-trained Word Embedding on the other 

hand, was trained without the specific task in mind and thus uses data which might not 

be representative of the input dataset. 

Reasons why the custom Word Embedding performed better in dataset 1 and 2 than 

the pre-trained Word Embedding could be: 

- The age of the Word Embedding: The Word Embedding was trained in 

2015. Even though ethics and the definition of what an integrity risk is 

changes over time, the articles focus on corruption, which is neither a new 

field nor one that changed very much in the last five years. This could be 

verified or falsified by training a new Word Embedding with up-to-date data, 

although it would be hard to determine if the differences would be because 

the data is more up-to-date or just because the data is different. 

- The domain of the Word Embedding: The Word Embedding does not 

apply to the task. This is also unlikely, since it was made using news articles 

among other things. This could be verified by training a new Word 

Embedding, using the source code provided by the creator, but without 

including the Wikipedia dataset. 

- Data preprocessing and size: The custom Word Embedding uses only the 

top 500 words after data preprocessing, while the pre-trained Word 

Embedding includes 60’000 words and thus has an input layer of 60’000 

neurons. The weight of all the words, which are not part of the input dataset, 

is set to 0. They are thus ignored, which reduces the size of the network. 

This and because the Word Embedding itself already serves as a filter, by 

leaving out words, which are not present in the Word Embedding, is the 
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reason, why stop word elimination was not done for the pre-trained Word 

Embedding models. While this is positive, because it ensures, that only 

words which are part of the Word Embedding end up in the network, thus 

the network does not train with wrongly spelled words or unimportant names 

and abbreviations, it also makes the network consider words, which are not 

as descriptive and less unique such as stop words. This might make the 

network find features, which are not descriptive for the specific label, but 

descriptive for the specific dataset and/or author, source or any other 

characteristic which are not relevant for the detection of integrity risks. This 

might also be a reason, why dataset 1 has such a high accuracy with a 

custom Word Embedding. Because the custom Word Embedding only 

includes the top 500 words, it is most likely, that some of these words are 

the keywords used to extract the dataset, which are very distinctive features, 

because they are only included in the positive dataset. 

To test this theory tests with a CNN network and a bigger custom Word Embedding 

have been conducted, which yielded the following results: 

 

Size of Word 

Embedding 

Result/Test Accuracy with 

stopword reduction 

Result/Test Accuracy without 

stopword reduction 

500 0.7743 0.7701 

1000 0.7761 0.7836 

1500 0.7887 0.7852 

2000 0.7929 0.7829 

2500 0.7853 0.7896 

3000 0.7885 0.7831 

3500 0.7919 0.7891 

4000 0.7944 0.7963 

 
 

Networks with stopword reduction did not make up for a bigger difference than 1% and 

in no clear direction, thus did not have a significant impact on the accuracy. The results 

show a small increase in accuracy in bigger Word Embeddings. The detailed results 

can be found in the appendix in Chapter 9.1.3.1. 
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4.5 Evaluation Of Model Architecture 

The following table shows the average score of each model over all datasets and 

dataset 3 specifically and both Word Embeddings: 

 

Model 
Average accuracy / all 

datasets 

Average accuracy / dataset 

3 

CNN 0.8125 0.7909 

RCNN 0.8086 0.7814 

LSTM 0.8044 0.7660 

Double LSTM 0.8028 0.7782 

LSTM + Dropout 0.8147 0.7944 

GRU 0.7780 0.7784 

Double GRU 0.8083 0.8045 

GRU + Dropout 0.8184 0.8401 

LSTM bidirectional 0.8019 0.7977 

LSTM bidirectional + Dropout 0.7549 0.7413 

 
 

The differences between LSTM and GRU networks were bigger than expected, even 

though they should achieve similar results according to the literature, with the main 

difference being their efficiency. 

The difference of efficiency turned out to be as expected: GRU was much more efficient 

than LSTM. It managed to calculate twice the amount of epochs compared to LSTM in 

all of its occurrences. The millisecond per step value cannot always be compared 

though, because it depends on circumstances at the time, such as the available 

computing power, which is distorted by the amount of networks running, as well as 

other tasks done by the machine at the same time. 

There was no significant improvement by stacking two LSTM layers on top of each 

other, compared to the more shallow and less complex variant with only one LSTM 

layer. For GRU there was a significant difference between the stacked and non- 

stacked version, with a difference of approximately 2%. Because the literature 

suggests that they should have similar scores and the result could be due to an unlucky 

draft of initial weights, all 4 networks have been computed again 2 times with dataset 

3 to get an average score after 4 epochs, as is the average time for an RNN to have 

an Overfitting problem. For the custom Word Embedding a size of 2000 has been 
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chosen, to reflect the findings of Chapter 6.4. The results can be seen in the following 

table: 

 

 Accuracy custom Word 

Embedding 

Accuracy pre-trained 

Word Embedding 

 
GRU 

First training 0.7788 0.8017 

Second training 0.7835 0.7971 

Average Score 0.7812 0.7994 

Double 

GRU 

First training 0.7899 0.7894 

Second training 0.7889 0.7840 

Average Score 0.7894 0.7867 

 
LSTM 

First training 0.7819 0.7662 

Second training 0.7908 0.7986 

Average Score 0.7864 0.7824 

Double 

LSTM 

First training 0.7883 0.7623 

Second training 0.7913 0.8380 

Average Score 0.7898 0.8002 

 
 

The results show that the difference between the shallow and the deep networks are 

less than 0.5% on average and not in favor of any of the two configurations and thus 

not significant. With the bigger custom Word Embedding layer the differences between 

the two types of Word Embeddings were reduced to approximately 2,2%. 

The models which included dropout layers scored higher generally, except for the 

LSTM bidirectional networks. The difference in RNN models was 2.5% higher, while 

for the LSTM bidirectional model it was approximately 5% lower. The higher score is 

because Overfitting was bypassed for a longer time in the models with output layers, 

which enabled them to train for more epochs as well as to train to detect features, 

which were less prominent. 

The CNN-based networks scored higher than most RNN networks, except the ones 

with dropout layers, with the exception of the bidirectional model. This is also likely due 

to the inclusion of the two dropout layers. 

The following table shows the average result after 4 trainings of the 4 highest scoring 

models, CNN, LSTM with a dropout layer, LSTM bidirectional and GRU with a dropout 

layer. Since pre-trained Word Embeddings scored slightly higher, even in the trainings 
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with a bigger custom Word Embedding, these implementations were done with a pre- 

trained Word Embedding. The amount of epochs has been set to the average amount 

of epochs the respective network managed to train for before facing an overfitting 

problem as described in Chapter 6.3. 

 

Model Attempt Accuracy 

 
 
 

CNN 

First training 0.8588 

Second training 0.8457 

Third training 0.8688 

Fourth training 0.8380 

Average Score 0.8528 

 
 
 

LSTM + Dropout 

First training 0.7847 

Second training 0.8241 

Third training 0.8256 

Fourth training 0.8272 

Average Score 0.8154 

 
 
 

GRU + Dropout 

First training 0.7878 

Second training 0.7971 

Third training 0.8009 

Fourth training 0.8002 

Average Score 0.7965 

 
 
 

LSTM bidirectional 

First training 0.7878 

Second training 0.7569 

Third training 0.7878 

Fourth training 0.8272 

Average Score 0.7899 

 
 

The highest scoring model is the CNN model with a difference in accuracy of more 

than 4% and an average accuracy of 85%. To confirm if CNN networks work best for 

integrity risk detection in general or just for this dataset, additional tests with bigger 

datasets containing samples with higher quality have to be undertaken. 
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5 Conclusion 

To detect integrity risks in news documents is a binary classification task, thus needs 

a supervised Deep Learning approach. This means that input data with answers to the 

task needs to be provided. In this case the answers come in form of two labels, integrity 

risk news articles and not integrity risk news articles. The literature review concluded, 

that CNN and RNN networks work best for NLP tasks. For the experiments various 

types of networks based on both CNN and RNN were implemented and evaluated. 

The conclusion of the experiments are the following: 

 
- Pre-trained Word Embedding work slightly better for this task with this 

particular dataset than custom Word Embeddings. The reason for this might 

be the size of the input data. With a bigger input dataset, a custom Word 

Embedding should be considered. Bigger custom Word Embeddings had a 

higher accuracy than smaller ones. 

- Dropout layers help to counteract Overfitting, thus allow networks to run for 

more epochs. This has been shown to lead to better results overall. 

- Data quality and size are two of the most important factors to get good 

results. The bigger the dataset, the more the network can generalize. The 

better the quality of the dataset, the better it depicts non-simulated data and 

the less likely the network identifies features, which are non-descriptive of 

integrity risks. 

- In the initial experiments, the CNN models and the LSTM and GRU models 

with dropout layers, as well as the bidirectional LSTM yielded the best 

results. Additional tests revealed that the CNN model yields the best results 

of them with the quality and size of the current dataset. 

Deep Learning is a viable option to detect integrity risks in news articles. Both CNN 

and RNN (LSTM and GRU) as well as Bidirectional RNN networks should be evaluated 

for an integrity risk classification solution. It is important to build a dataset with high 

quality, which is big enough to be able to use Deep Learning for this task. To see if 

Deep Learning performs better than conventional methods for this task additional 

research is required. 
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Appendix 

The following chapters contain the detailed training results for each epoch of each training 

divided into the two Word Embedding types and the three different datasets. An example for 

each model implementation and each Word Embedding can be found in the following GitHub 

repository: https://github.com/ukalb/IntegrityRiskDL 

Appendix A Training Results for Custom Word Embedding Models 

CNN 

Dataset 1: 
Train on 41960 samples, validate on 10490 samples 
Epoch 1/4 - 41960/41960 - 292s 7ms/step - loss: 0.0795 - acc: 0.9772 - val_loss: 
0.0667 - val_acc: 0.9762 
Epoch 2/4 - 41960/41960 - 283s 7ms/step - loss: 0.0443 - acc: 0.9826 - val_loss: 
0.0578 - val_acc: 0.9773 
Epoch 3/4 - 41960/41960 - 302s 7ms/step - loss: 0.0386 - acc: 0.9839 - val_loss: 
0.0633 - val_acc: 0.9772 
Epoch 4/4 - 41960/41960 - 293s 7ms/step - loss: 0.0352 - acc: 0.9854 - val_loss: 
0.0612 - val_acc: 0.9787 
10490/10490 - 18s 2ms/step 
Test score: 0.06115965358628843 
Test accuracy: 0.978741658722593 

 
Dataset 2: 
Train on 21040 samples, validate on 5261 samples 
Epoch 1/4 - 21040/21040 - 54s 3ms/step - loss: 0.6120 - acc: 0.6900 - val_loss: 
0.6085 - val_acc: 0.6932 
Epoch 2/4 - 21040/21040 - 59s 3ms/step - loss: 0.5919 - acc: 0.7048 - val_loss: 
0.5926 - val_acc: 0.7006 
Epoch 3/4 - 21040/21040 - 58s 3ms/step - loss: 0.5834 - acc: 0.7095 - val_loss: 
0.5988 - val_acc: 0.6974 
Epoch 4/4 - 21040/21040 - 85s 4ms/step - loss: 0.5752 - acc: 0.7138 - val_loss: 
0.6056 - val_acc: 0.6892 
5261/5261 - 5s 912us/step 
Test score: 0.6055545946691137 
Test accuracy: 0.6892225812923045 

 
Dataset 3: 
Train on 58620 samples, validate on 14655 samples 
Epoch 1/4 - 58620/58620 - 174s 3ms/step - loss: 0.5208 - acc: 0.7648 - val_loss: 
0.5139 - val_acc: 0.7704 
Epoch 2/4 - 58620/58620 - 134s 2ms/step - loss: 0.5004 - acc: 0.7766 - val_loss: 
0.5061 - val_acc: 0.7716 
Epoch 3/4 - 58620/58620 - 109s 2ms/step - loss: 0.4943 - acc: 0.7798 - val_loss: 
0.5044 - val_acc: 0.7744 
Epoch 4/4 - 58620/58620 - 89s 2ms/step - loss: 0.4882 - acc: 0.7833 - val_loss: 
0.5048 - val_acc: 0.7733 
14655/14655 - 5s 354us/step 
Test score: 0.5047620832208316 
Test accuracy: 0.7732514500292605 

https://github.com/ukalb/IntegrityRiskDL
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RCNN 

Dataset 1: 
Train on 41960 samples, validate on 10490 samples 
Epoch 1/4 
41960/41960 - 206s 5ms/step - loss: 0.0742 - acc: 0.9790 - val_loss: 0.0395 - 
val_acc: 0.9866 
Epoch 2/4 
41960/41960 - 203s 5ms/step - loss: 0.0352 - acc: 0.9882 - val_loss: 0.0371 - 
val_acc: 0.9855 
Epoch 3/4 
41960/41960 - 202s 5ms/step - loss: 0.0303 - acc: 0.9892 - val_loss: 0.0396 - 
val_acc: 0.9849 
Epoch 4/4 
41960/41960 - 203s 5ms/step - loss: 0.0280 - acc: 0.9893 - val_loss: 0.0409 - 
val_acc: 0.9848 
10490/10490 - 8s 769us/step 
Test score: 0.04094634840684522 
Test accuracy: 0.9848426991809085 

 
Dataset 2: 
Train on 21040 samples, validate on 5261 samples 
Epoch 1/4 - 21040/21040 - 50s 2ms/step - loss: 0.6134 - acc: 0.6917 - val_loss: 
0.6106 - val_acc: 0.6917 
Epoch 2/4 - 21040/21040 - 50s 2ms/step - loss: 0.5917 - acc: 0.7051 - val_loss: 
0.5925 - val_acc: 0.7023 
Epoch 3/4 - 21040/21040 - 51s 2ms/step - loss: 0.5823 - acc: 0.7120 - val_loss: 
0.5952 - val_acc: 0.7023 
Epoch 4/4 - 21040/21040 - 50s 2ms/step - loss: 0.5719 - acc: 0.7172 - val_loss: 
0.5978 - val_acc: 0.6942 
5261/5261 - 2s 351us/step 
Test score: 0.5978319810225786 
Test accuracy: 0.6941646097209875 

 

Dataset 3: 
Train on 58620 samples, validate on 14655 samples 
Epoch 1/4 - 58620/58620 - 142s 2ms/step - loss: 0.5194 - acc: 0.7663 - val_loss: 
0.5019 - val_acc: 0.7730 
Epoch 2/4 - 58620/58620 - 117s 2ms/step - loss: 0.4931 - acc: 0.7804 - val_loss: 
0.5006 - val_acc: 0.7758 
Epoch 3/4 - 58620/58620 - 197s 3ms/step - loss: 0.4841 - acc: 0.7859 - val_loss: 
0.4976 - val_acc: 0.7781 
Epoch 4/4 - 58620/58620 - 231s 4ms/step - loss: 0.4777 - acc: 0.7902 - val_loss: 
0.4990 - val_acc: 0.7762 
14655/14655 - 9s 586us/step 
Test score: 0.4989652040975975 
Test accuracy: 0.7761856010650783 

LSTM 

Dataset 1: 
Train on 41960 samples, validate on 10490 samples 
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Epoch 1/10 - 41960/41960 - 681s 16ms/step - loss: 0.1301 - acc: 0.9724 - val_loss: 
0.1224 - val_acc: 0.9724 
Epoch 2/10 - 41960/41960 - 681s 16ms/step - loss: 0.1026 - acc: 0.9735 - val_loss: 
0.0962 - val_acc: 0.9724 
Epoch 3/10 - 41960/41960 - 678s 16ms/step - loss: 0.0729 - acc: 0.9774 - val_loss: 
0.0653 - val_acc: 0.9783 
Epoch 4/10 - 41960/41960 - 681s 16ms/step - loss: 0.1009 - acc: 0.9754 - val_loss: 
0.0647 - val_acc: 0.9765 
Epoch 5/10 - 41960/41960 - 849s 20ms/step - loss: 0.1049 - acc: 0.9734 - val_loss: 
0.1111 - val_acc: 0.9725 
Epoch 6/10 - 41960/41960 - 892s 21ms/step - loss: 0.0836 - acc: 0.9742 - val_loss: 
0.0757 - val_acc: 0.9742 
Epoch 7/10 - 41960/41960 - 1000s 24ms/step - loss: 0.0566 - acc: 0.9788 - val_loss: 
0.0557 - val_acc: 0.9802 
Epoch 8/10 - 41960/41960 - 1044s 25ms/step - loss: 0.0395 - acc: 0.9857 - val_loss: 
0.0531 - val_acc: 0.9838 
Epoch 9/10 - 41960/41960 - 994s 24ms/step - loss: 0.0354 - acc: 0.9872 - val_loss: 
0.0489 - val_acc: 0.9837 
Epoch 10/10 - 41960/41960 - 1215s 29ms/step - loss: 0.0328 - acc: 0.9885 - 
val_loss: 0.0640 - val_acc: 0.9821 

 

Dataset 2: 
Train on 21040 samples, validate on 5261 samples 
Epoch 1/8 - 21040/21040 - 126s 6ms/step - loss: 0.6246 - acc: 0.6819 - val_loss: 
0.6201 - val_acc: 0.6805 
Epoch 2/8 - 21040/21040 - 195s 9ms/step - loss: 0.6069 - acc: 0.6949 - val_loss: 
0.6068 - val_acc: 0.6919 
Epoch 3/8 - 21040/21040 - 268s 13ms/step - loss: 0.5934 - acc: 0.7068 - val_loss: 
0.6022 - val_acc: 0.6991 
Epoch 4/8 - 21040/21040 - 270s 13ms/step - loss: 0.5897 - acc: 0.7109 - val_loss: 
0.6029 - val_acc: 0.6982 
Epoch 5/8 - 21040/21040 - 269s 13ms/step - loss: 0.5863 - acc: 0.7115 - val_loss: 
0.6041 - val_acc: 0.6980 
Epoch 6/8 - 21040/21040 - 269s 13ms/step - loss: 0.5844 - acc: 0.7134 - val_loss: 
0.6051 - val_acc: 0.6953 
Epoch 7/8 - 21040/21040 - 269s 13ms/step - loss: 0.5821 - acc: 0.7145 - val_loss: 
0.6125 - val_acc: 0.6995 
Epoch 8/8 - 21040/21040 - 270s 13ms/step - loss: 0.5773 - acc: 0.7173 - val_loss: 
0.6134 - val_acc: 0.6974 

 
Dataset 3: 

Train on 58620 samples, validate on 14655 samples 
Epoch 1/10 - 58620/58620 - 1052s 18ms/step - loss: 0.5460 - acc: 0.7498 - val_loss: 
0.5270 - val_acc: 0.7543 
Epoch 2/10 - 58620/58620 - 570s 10ms/step - loss: 0.5160 - acc: 0.7665 - val_loss: 
0.5363 - val_acc: 0.7608 
Epoch 3/10 - 58620/58620 - 571s 10ms/step - loss: 0.5134 - acc: 0.7624 - val_loss: 
0.5214 - val_acc: 0.7487 
Epoch 4/10 - 58620/58620 - 571s 10ms/step - loss: 0.5092 - acc: 0.7666 - val_loss: 
0.5086 - val_acc: 0.7681 
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Epoch 5/10 - 58620/58620 - 571s 10ms/step - loss: 0.4980 - acc: 0.7775 - val_loss: 
0.5107 - val_acc: 0.7684 
Epoch 6/10 - 58620/58620 - 568s 10ms/step - loss: 0.4990 - acc: 0.7733 - val_loss: 
0.5136 - val_acc: 0.7597 
Epoch 7/10 - 58620/58620 - 570s 10ms/step - loss: 0.5018 - acc: 0.7704 - val_loss: 
0.5373 - val_acc: 0.7415 
Epoch 8/10 - 58620/58620 - 568s 10ms/step - loss: 0.4987 - acc: 0.7735 - val_loss: 
0.5079 - val_acc: 0.7705 
Epoch 9/10 - 58620/58620 - 571s 10ms/step - loss: 0.4886 - acc: 0.7842 - val_loss: 
0.5067 - val_acc: 0.7703 
Epoch 10/10 - 58620/58620 - 567s 10ms/step - loss: 0.4860 - acc: 0.7854 - val_loss: 
0.5033 - val_acc: 0.7750 

Double LSTM 

Dataset 1: 
Train on 41960 samples, validate on 10490 samples 
Epoch 1/10 - 41960/41960 - 1385s 33ms/step - loss: 0.1165 - acc: 0.9727 - val_loss: 
0.1468 - val_acc: 0.9743 
Epoch 2/10 - 41960/41960 - 1432s 34ms/step - loss: 0.1153 - acc: 0.9739 - val_loss: 
0.1196 - val_acc: 0.9743 
Epoch 3/10 - 41960/41960 - 1817s 43ms/step - loss: 0.1228 - acc: 0.9735 - val_loss: 
0.1197 - val_acc: 0.9743 
Epoch 4/10 - 41960/41960 - 2186s 52ms/step - loss: 0.1225 - acc: 0.9735 - val_loss: 
0.1200 - val_acc: 0.9743 
Epoch 5/10 - 41960/41960 - 2339s 56ms/step - loss: 0.1223 - acc: 0.9735 - val_loss: 
0.1188 - val_acc: 0.9743 
Epoch 6/10 - 41960/41960 - 1462s 35ms/step - loss: 0.1177 - acc: 0.9735 - val_loss: 
0.0976 - val_acc: 0.9742 
Epoch 7/10 - 41960/41960 - 1951s 47ms/step - loss: 0.0973 - acc: 0.9735 - val_loss: 
0.0818 - val_acc: 0.9745 
Epoch 8/10 - 41960/41960 - 1164s 28ms/step - loss: 0.0794 - acc: 0.9739 - val_loss: 
0.0815 - val_acc: 0.9744 
Epoch 9/10 - 41960/41960 - 886s 21ms/step - loss: 0.0724 - acc: 0.9770 - val_loss: 
0.0692 - val_acc: 0.9797 
Epoch 10/10 - 41960/41960 - 1180s 28ms/step - loss: 0.0671 - acc: 0.9770 - 
val_loss: 0.0717 - val_acc: 0.9806 

 
Dataset 2: 
Train on 21040 samples, validate on 5261 samples 
Epoch 1/10 - 21040/21040 - 437s 21ms/step - loss: 0.6212 - acc: 0.6850 - val_loss: 
0.6112 - val_acc: 0.6936 
Epoch 2/10 - 21040/21040 - 382s 18ms/step - loss: 0.5993 - acc: 0.7019 - val_loss: 
0.6059 - val_acc: 0.6972 
Epoch 3/10 - 21040/21040 - 237s 11ms/step - loss: 0.5931 - acc: 0.7058 - val_loss: 
0.6144 - val_acc: 0.6972 
Epoch 4/10 - 21040/21040 - 252s 12ms/step - loss: 0.5872 - acc: 0.7077 - val_loss: 
0.6053 - val_acc: 0.7018 
Epoch 5/10 - 21040/21040 - 265s 13ms/step - loss: 0.5833 - acc: 0.7117 - val_loss: 
0.6038 - val_acc: 0.7029 
Epoch 6/10 - 21040/21040 - 279s 13ms/step - loss: 0.5796 - acc: 0.7135 - val_loss: 
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Epoch 7/10 - 21040/21040 - 291s 14ms/step - loss: 0.5763 - acc: 0.7152 - val_loss: 
0.6083 - val_acc: 0.6938 
Epoch 8/10 - 21040/21040 - 287s 14ms/step - loss: 0.5796 - acc: 0.7141 - val_loss: 
0.6048 - val_acc: 0.7001 
Epoch 9/10 - 21040/21040 - 234s 11ms/step - loss: 0.5729 - acc: 0.7162 - val_loss: 
0.6113 - val_acc: 0.7001 
Epoch 10/10 - 21040/21040 - 234s 11ms/step - loss: 0.5698 - acc: 0.7191 - val_loss: 
0.6062 - val_acc: 0.7029 

 

Dataset 3: 
Train on 58620 samples, validate on 14655 samples 
Epoch 1/10 - 58620/58620 - 1651s 28ms/step - loss: 0.5454 - acc: 0.7509 - val_loss: 
0.5363 - val_acc: 0.7485 
Epoch 2/10 - 58620/58620 - 1146s 20ms/step - loss: 0.5341 - acc: 0.7548 - val_loss: 
0.5742 - val_acc: 0.7387 
Epoch 3/10 - 58620/58620 - 1144s 20ms/step - loss: 0.5635 - acc: 0.7441 - val_loss: 
0.5538 - val_acc: 0.7387 
Epoch 4/10 - 58620/58620 - 1143s 19ms/step - loss: 0.5559 - acc: 0.7441 - val_loss: 
0.5475 - val_acc: 0.7387 
Epoch 5/10 - 58620/58620 - 1130s 19ms/step - loss: 0.5235 - acc: 0.7598 - val_loss: 
0.5298 - val_acc: 0.7636 
Epoch 6/10 - 58620/58620 - 653s 11ms/step - loss: 0.5067 - acc: 0.7750 - val_loss: 
0.5179 - val_acc: 0.7678 
Epoch 7/10 - 58620/58620 - 654s 11ms/step - loss: 0.5005 - acc: 0.7785 - val_loss: 
0.5129 - val_acc: 0.7680 
Epoch 8/10 - 58620/58620 - 654s 11ms/step - loss: 0.4999 - acc: 0.7796 - val_loss: 
0.5137 - val_acc: 0.7691 
Epoch 9/10 - 58620/58620 - 653s 11ms/step - loss: 0.4944 - acc: 0.7821 - val_loss: 
0.5133 - val_acc: 0.7672 
Epoch 10/10 - 58620/58620 - 664s 11ms/step - loss: 0.4919 - acc: 0.7832 - val_loss: 
0.5109 - val_acc: 0.7675 

LSTM + Dropout 

Dataset 1: 
Train on 41960 samples, validate on 10490 samples 
Epoch 1/10 - 41960/41960 - 1005s 24ms/step - loss: 0.1297 - acc: 0.9721 - val_loss: 
0.0959 - val_acc: 0.9739 
Epoch 2/10 - 41960/41960 - 851s 20ms/step - loss: 0.0902 - acc: 0.9740 - val_loss: 
0.1095 - val_acc: 0.9770 
Epoch 3/10 - 41960/41960 - 1102s 26ms/step - loss: 0.0671 - acc: 0.9777 - val_loss: 
0.0827 - val_acc: 0.9790 
Epoch 4/10 - 41960/41960 - 981s 23ms/step - loss: 0.0647 - acc: 0.9806 - val_loss: 
0.0842 - val_acc: 0.9745 
Epoch 5/10 - 41960/41960 - 1142s 27ms/step - loss: 0.0552 - acc: 0.9820 - val_loss: 
0.0577 - val_acc: 0.9826 
Epoch 6/10 - 41960/41960 - 1085s 26ms/step - loss: 0.0844 - acc: 0.9771 - val_loss: 
0.0596 - val_acc: 0.9807 
Epoch 7/10 - 41960/41960 - 727s 17ms/step - loss: 0.0712 - acc: 0.9752 - val_loss: 
0.0665 - val_acc: 0.9800 
Epoch 8/10 - 41960/41960 - 752s 18ms/step - loss: 0.0484 - acc: 0.9832 - val_loss: 
0.0552 - val_acc: 0.9828 
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Epoch 9/10 - 41960/41960 - 777s 19ms/step - loss: 0.0433 - acc: 0.9847 - val_loss: 
0.0481 - val_acc: 0.9837 
Epoch 10/10 - 41960/41960 - 806s 19ms/step - loss: 0.0441 - acc: 0.9844 - val_loss: 
0.0522 - val_acc: 0.9815 

 

Dataset 2: 
Train on 21040 samples, validate on 5261 samples 
Epoch 1/8 - 21040/21040 - 136s 6ms/step - loss: 0.6257 - acc: 0.6809 - val_loss: 
0.6191 - val_acc: 0.6828 
Epoch 2/8 - 21040/21040 - 299s 14ms/step - loss: 0.6063 - acc: 0.6943 - val_loss: 
0.6022 - val_acc: 0.7004 
Epoch 3/8 - 21040/21040 - 431s 21ms/step - loss: 0.5957 - acc: 0.7048 - val_loss: 
0.6048 - val_acc: 0.6980 
Epoch 4/8 - 21040/21040 - 429s 20ms/step - loss: 0.5907 - acc: 0.7080 - val_loss: 
0.6166 - val_acc: 0.6911 
Epoch 5/8 - 21040/21040 - 422s 20ms/step - loss: 0.5888 - acc: 0.7096 - val_loss: 
0.6005 - val_acc: 0.7001 
Epoch 6/8 - 21040/21040 - 210s 10ms/step - loss: 0.5868 - acc: 0.7117 - val_loss: 
0.6003 - val_acc: 0.7020 
Epoch 7/8 - 21040/21040 - 192s 9ms/step - loss: 0.5852 - acc: 0.7139 - val_loss: 
0.5993 - val_acc: 0.7014 
Epoch 8/8 - 21040/21040 - 192s 9ms/step - loss: 0.5875 - acc: 0.7116 - val_loss: 
0.6006 - val_acc: 0.6997 

 
Dataset 3: 
Train on 58620 samples, validate on 14655 samples 
Epoch 1/10 - 58620/58620 - 671s 11ms/step - loss: 0.5424 - acc: 0.7522 - val_loss: 
0.5178 - val_acc: 0.7632 
Epoch 2/10 - 58620/58620 - 304s 5ms/step - loss: 0.5150 - acc: 0.7684 - val_loss: 
0.5161 - val_acc: 0.7651 
Epoch 3/10 - 58620/58620 - 303s 5ms/step - loss: 0.5145 - acc: 0.7670 - val_loss: 
0.5157 - val_acc: 0.7690 
Epoch 4/10 - 58620/58620 - 303s 5ms/step - loss: 0.5024 - acc: 0.7763 - val_loss: 
0.5167 - val_acc: 0.7529 
Epoch 5/10 - 58620/58620 - 303s 5ms/step - loss: 0.5068 - acc: 0.7661 - val_loss: 
0.5084 - val_acc: 0.7671 
Epoch 6/10 - 58620/58620 - 304s 5ms/step - loss: 0.5083 - acc: 0.7654 - val_loss: 
0.5058 - val_acc: 0.7718 
Epoch 7/10 - 58620/58620 - 303s 5ms/step - loss: 0.5008 - acc: 0.7744 - val_loss: 
0.5060 - val_acc: 0.7709 
Epoch 8/10 - 58620/58620 - 303s 5ms/step - loss: 0.4985 - acc: 0.7749 - val_loss: 
0.5200 - val_acc: 0.7554 
Epoch 9/10 - 58620/58620 - 304s 5ms/step - loss: 0.4906 - acc: 0.7813 - val_loss: 
0.5062 - val_acc: 0.7713 
Epoch 10/10 - 58620/58620 - 304s 5ms/step - loss: 0.4921 - acc: 0.7813 - val_loss: 
0.5033 - val_acc: 0.7715 

 
GRU 

Dataset 1: 
Train on 41960 samples, validate on 10490 samples 
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Epoch 1/10 - 41960/41960 - 331s 8ms/step - loss: 0.0418 - acc: 0.9859 - val_loss: 
0.0416 - val_acc: 0.9865 
Epoch 2/10 - 41960/41960 - 324s 8ms/step - loss: 0.0317 - acc: 0.9886 - val_loss: 
0.0405 - val_acc: 0.9861 
Epoch 3/10 - 41960/41960 - 325s 8ms/step - loss: 0.0281 - acc: 0.9898 - val_loss: 
0.0425 - val_acc: 0.9849 
Epoch 4/10 - 41960/41960 - 324s 8ms/step - loss: 0.0263 - acc: 0.9900 - val_loss: 
0.0415 - val_acc: 0.9867 
Epoch 5/10 - 41960/41960 - 324s 8ms/step - loss: 0.0246 - acc: 0.9904 - val_loss: 
0.0466 - val_acc: 0.9859 
Epoch 6/10 - 41960/41960 - 324s 8ms/step - loss: 0.0240 - acc: 0.9909 - val_loss: 
0.0438 - val_acc: 0.9861 
Epoch 7/10 - 41960/41960 - 325s 8ms/step - loss: 0.0225 - acc: 0.9917 - val_loss: 
0.0470 - val_acc: 0.9861 
Epoch 8/10 - 41960/41960 - 329s 8ms/step - loss: 0.0219 - acc: 0.9919 - val_loss: 
0.0461 - val_acc: 0.9862 
Epoch 9/10 - 41960/41960 - 325s 8ms/step - loss: 0.0198 - acc: 0.9927 - val_loss: 
0.0516 - val_acc: 0.9845 
Epoch 10/10 - 41960/41960 - 324s 8ms/step - loss: 0.0188 - acc: 0.9930 - val_loss: 
0.0474 - val_acc: 0.9852 

 

Dataset 2: 
Train on 21040 samples, validate on 5261 samples 
Epoch 1/15 - 21040/21040 - 172s 8ms/step - loss: 0.6261 - acc: 0.6798 - val_loss: 
0.6191 - val_acc: 0.6894 
Epoch 2/15 - 21040/21040 - 219s 10ms/step - loss: 0.6081 - acc: 0.6944 - val_loss: 
0.6055 - val_acc: 0.6976 
Epoch 3/15 - 21040/21040 - 221s 11ms/step - loss: 0.5965 - acc: 0.7013 - val_loss: 
0.5936 - val_acc: 0.7098 
Epoch 4/15 - 21040/21040 - 223s 11ms/step - loss: 0.5894 - acc: 0.7058 - val_loss: 
0.5940 - val_acc: 0.7059 
Epoch 5/15 - 21040/21040 - 222s 11ms/step - loss: 0.5842 - acc: 0.7063 - val_loss: 
0.5962 - val_acc: 0.7023 
Epoch 6/15 - 21040/21040 - 222s 11ms/step - loss: 0.5803 - acc: 0.7083 - val_loss: 
0.5989 - val_acc: 0.7039 
Epoch 7/15 - 21040/21040 - 222s 11ms/step - loss: 0.5766 - acc: 0.7109 - val_loss: 
0.6023 - val_acc: 0.6997 
Epoch 8/15 - 21040/21040 - 222s 11ms/step - loss: 0.5741 - acc: 0.7117 - val_loss: 
0.6012 - val_acc: 0.7004 
Epoch 9/15 - 21040/21040 - 183s 9ms/step - loss: 0.5721 - acc: 0.7120 - val_loss: 
0.6031 - val_acc: 0.7042 
Epoch 10/15 - 21040/21040 - 163s 8ms/step - loss: 0.5683 - acc: 0.7134 - val_loss: 
0.6065 - val_acc: 0.7073 
Epoch 11/15 - 21040/21040 - 164s 8ms/step - loss: 0.5643 - acc: 0.7175 - val_loss: 
0.6094 - val_acc: 0.6972 
Epoch 12/15 - 21040/21040 - 163s 8ms/step - loss: 0.5602 - acc: 0.7198 - val_loss: 
0.6152 - val_acc: 0.7023 
Epoch 13/15 - 21040/21040 - 164s 8ms/step - loss: 0.5605 - acc: 0.7187 - val_loss: 
0.6160 - val_acc: 0.6997 
Epoch 14/15 - 21040/21040 - 163s 8ms/step - loss: 0.5550 - acc: 0.7231 - val_loss: 
0.6244 - val_acc: 0.7006 



Deep learning for detecting integrity risks in text documents 61 

Churer Schriften zur Informationswissenschaft – Schrift 103 Master Thesis Kalbermatter 

 

 

 

 

Epoch 15/15 - 21040/21040 - 164s 8ms/step - loss: 0.5521 - acc: 0.7255 - val_loss: 
0.6258 - val_acc: 0.7016 

 
Dataset 3: 
Train on 58620 samples, validate on 14655 samples 
Epoch 1/15 - 58620/58620 - 1015s 17ms/step - loss: 0.5562 - acc: 0.7447 - val_loss: 
0.5247 - val_acc: 0.7564 
Epoch 2/15 - 58620/58620 - 929s 16ms/step - loss: 0.5149 - acc: 0.7680 - val_loss: 
0.5111 - val_acc: 0.7679 
Epoch 3/15 - 58620/58620 - 933s 16ms/step - loss: 0.5045 - acc: 0.7751 - val_loss: 
0.5067 - val_acc: 0.7729 
Epoch 4/15 - 58620/58620 - 977s 17ms/step - loss: 0.4977 - acc: 0.7800 - val_loss: 
0.4993 - val_acc: 0.7776 
Epoch 5/15 - 58620/58620 - 822s 14ms/step - loss: 0.4934 - acc: 0.7824 - val_loss: 
0.4977 - val_acc: 0.7772 
Epoch 6/15 - 58620/58620 - 866s 15ms/step - loss: 0.4913 - acc: 0.7832 - val_loss: 
0.5010 - val_acc: 0.7722 
Epoch 7/15 - 58620/58620 - 736s 13ms/step - loss: 0.4894 - acc: 0.7835 - val_loss: 
0.4993 - val_acc: 0.7779 
Epoch 8/15 - 58620/58620 - 437s 7ms/step - loss: 0.4851 - acc: 0.7871 - val_loss: 
0.4989 - val_acc: 0.7769 
Epoch 9/15 - 58620/58620 - 558s 10ms/step - loss: 0.4823 - acc: 0.7886 - val_loss: 
0.4971 - val_acc: 0.7780 
Epoch 10/15 - 58620/58620 - 560s 10ms/step - loss: 0.4787 - acc: 0.7911 - val_loss: 
0.4979 - val_acc: 0.7774 
Epoch 11/15 - 58620/58620 - 479s 8ms/step - loss: 0.4753 - acc: 0.7923 - val_loss: 
0.4997 - val_acc: 0.7756 
Epoch 12/15 - 58620/58620 - 534s 9ms/step - loss: 0.4724 - acc: 0.7936 - val_loss: 
0.5027 - val_acc: 0.7750 
Epoch 13/15 - 58620/58620 - 321s 5ms/step - loss: 0.4682 - acc: 0.7968 - val_loss: 
0.5055 - val_acc: 0.7776 
Epoch 14/15 - 58620/58620 - 320s 5ms/step - loss: 0.4641 - acc: 0.7984 - val_loss: 
0.5150 - val_acc: 0.7732 
Epoch 15/15 - 58620/58620 - 320s 5ms/step - loss: 0.4607 - acc: 0.8004 - val_loss: 
0.5123 - val_acc: 0.7737 

 
Double GRU 

Dataset 1: 
Train on 41960 samples, validate on 10490 samples 
Epoch 1/10 - 41960/41960 - 689s 16ms/step - loss: 0.1074 - acc: 0.9748 - val_loss: 
0.0734 - val_acc: 0.9790 
Epoch 2/10 - 41960/41960 - 650s 15ms/step - loss: 0.0657 - acc: 0.9809 - val_loss: 
0.0539 - val_acc: 0.9826 
Epoch 3/10 - 41960/41960 - 649s 15ms/step - loss: 0.0527 - acc: 0.9833 - val_loss: 
0.0481 - val_acc: 0.9832 
Epoch 4/10 - 41960/41960 - 649s 15ms/step - loss: 0.0388 - acc: 0.9865 - val_loss: 
0.0474 - val_acc: 0.9818 
Epoch 5/10 - 41960/41960 - 655s 16ms/step - loss: 0.0351 - acc: 0.9871 - val_loss: 
0.0445 - val_acc: 0.9855 
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Epoch 6/10 - 41960/41960 - 799s 19ms/step - loss: 0.0328 - acc: 0.9882 - val_loss: 
0.0478 - val_acc: 0.9861 
Epoch 7/10 - 41960/41960 - 1149s 27ms/step - loss: 0.0306 - acc: 0.9887 - val_loss: 
0.0475 - val_acc: 0.9854 
Epoch 8/10 - 41960/41960 - 1145s 27ms/step - loss: 0.0290 - acc: 0.9890 - val_loss: 
0.0423 - val_acc: 0.9862 
Epoch 9/10 - 41960/41960 - 1473s 35ms/step - loss: 0.0283 - acc: 0.9897 - val_loss: 
0.0423 - val_acc: 0.9845 
Epoch 10/10 - 41960/41960 - 1792s 43ms/step - loss: 0.0269 - acc: 0.9905 - 
val_loss: 0.0425 - val_acc: 0.9856 

 

Dataset 2: 
Train on 21040 samples, validate on 5261 samples 
Epoch 1/10 - 21040/21040 - 462s 22ms/step - loss: 0.6263 - acc: 0.6771 - val_loss: 
0.6046 - val_acc: 0.7029 
Epoch 2/10 - 21040/21040 - 453s 22ms/step - loss: 0.6081 - acc: 0.6914 - val_loss: 
0.5925 - val_acc: 0.7075 
Epoch 3/10 - 21040/21040 - 454s 22ms/step - loss: 0.5965 - acc: 0.7012 - val_loss: 
0.5974 - val_acc: 0.7098 
Epoch 4/10 - 21040/21040 - 383s 18ms/step - loss: 0.5913 - acc: 0.7035 - val_loss: 
0.5994 - val_acc: 0.7079 
Epoch 5/10 - 21040/21040 - 330s 16ms/step - loss: 0.5841 - acc: 0.7077 - val_loss: 
0.6053 - val_acc: 0.7109 
Epoch 6/10 - 21040/21040 - 330s 16ms/step - loss: 0.5765 - acc: 0.7119 - val_loss: 
0.5977 - val_acc: 0.7025 
Epoch 7/10 - 21040/21040 - 307s 15ms/step - loss: 0.5727 - acc: 0.7139 - val_loss: 
0.6014 - val_acc: 0.7082 
Epoch 8/10 - 21040/21040 - 233s 11ms/step - loss: 0.5688 - acc: 0.7154 - val_loss: 
0.6087 - val_acc: 0.7079 
Epoch 9/10 - 21040/21040 - 233s 11ms/step - loss: 0.5652 - acc: 0.7161 - val_loss: 
0.6191 - val_acc: 0.6940 
Epoch 10/10 - 21040/21040 - 233s 11ms/step - loss: 0.5643 - acc: 0.7153 - val_loss: 
0.6107 - val_acc: 0.7109 

 

Dataset 3: 
Train on 58620 samples, validate on 14655 samples 
Epoch 1/10 - 58620/58620 - 1003s 17ms/step - loss: 0.5433 - acc: 0.7510 - 
val_loss: 0.5236 - val_acc: 0.7639 
Epoch 2/10 - 58620/58620 - 787s 13ms/step - loss: 0.5187 - acc: 0.7644 - val_loss: 
0.5116 - val_acc: 0.7713 
Epoch 3/10 - 58620/58620 - 1026s 18ms/step - loss: 0.5024 - acc: 0.7757 - 
val_loss: 0.5001 - val_acc: 0.7779 
Epoch 4/10 - 58620/58620 - 664s 11ms/step - loss: 0.4944 - acc: 0.7795 - val_loss: 
0.5001 - val_acc: 0.7764 
Epoch 5/10 - 58620/58620 - 643s 11ms/step - loss: 0.4977 - acc: 0.7785 - val_loss: 
0.5016 - val_acc: 0.7778 
Epoch 6/10 - 58620/58620 - 648s 11ms/step - loss: 0.4893 - acc: 0.7834 - val_loss: 
0.4953 - val_acc: 0.7784 
Epoch 7/10 - 58620/58620 - 647s 11ms/step - loss: 0.4881 - acc: 0.7848 - val_loss: 
0.4975 - val_acc: 0.7795 
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Epoch 8/10 - 58620/58620 - 642s 11ms/step - loss: 0.4848 - acc: 0.7861 - val_loss: 
0.4982 - val_acc: 0.7796 
Epoch 9/10 - 58620/58620 - 643s 11ms/step - loss: 0.4820 - acc: 0.7870 - val_loss: 
0.4998 - val_acc: 0.7776 
Epoch 10/10 - 58620/58620 - 643s 11ms/step - loss: 0.4790 - acc: 0.7889 - 
val_loss: 0.5009 - val_acc: 0.7784 

GRU + Dropout 

Dataset 1: 
Train on 41960 samples, validate on 10490 samples 
Epoch 1/10 - 41960/41960 - 520s 12ms/step - loss: 0.1136 - acc: 0.9722 - val_loss: 
0.0681 - val_acc: 0.9796 
Epoch 2/10 - 41960/41960 - 549s 13ms/step - loss: 0.0677 - acc: 0.9784 - val_loss: 
0.1035 - val_acc: 0.9704 
Epoch 3/10 - 41960/41960 - 554s 13ms/step - loss: 0.0575 - acc: 0.9809 - val_loss: 
0.0490 - val_acc: 0.9829 
Epoch 4/10 - 41960/41960 - 548s 13ms/step - loss: 0.0347 - acc: 0.9874 - val_loss: 
0.0396 - val_acc: 0.9870 
Epoch 5/10 - 41960/41960 - 548s 13ms/step - loss: 0.0304 - acc: 0.9885 - val_loss: 
0.0437 - val_acc: 0.9871 
Epoch 6/10 - 41960/41960 - 554s 13ms/step - loss: 0.0284 - acc: 0.9893 - val_loss: 
0.0374 - val_acc: 0.9869 
Epoch 7/10 - 41960/41960 - 841s 20ms/step - loss: 0.0274 - acc: 0.9894 - val_loss: 
0.0360 - val_acc: 0.9883 
Epoch 8/10 - 41960/41960 - 658s 16ms/step - loss: 0.0260 - acc: 0.9903 - val_loss: 
0.0395 - val_acc: 0.9849 
Epoch 9/10 - 41960/41960 - 832s 20ms/step - loss: 0.0251 - acc: 0.9902 - val_loss: 
0.0402 - val_acc: 0.9862 
Epoch 10/10 - 41960/41960 - 864s 21ms/step - loss: 0.0237 - acc: 0.9908 - val_loss: 
0.0419 - val_acc: 0.9867 

 

Dataset 2: 
Train on 21040 samples, validate on 5261 samples 
Epoch 1/15 - 21040/21040 - 192s 9ms/step - loss: 0.6266 - acc: 0.6807 - val_loss: 
0.6170 - val_acc: 0.6852 
Epoch 2/15 - 21040/21040 - 339s 16ms/step - loss: 0.6125 - acc: 0.6878 - val_loss: 
0.5997 - val_acc: 0.7037 
Epoch 3/15 - 21040/21040 - 340s 16ms/step - loss: 0.5970 - acc: 0.7035 - val_loss: 
0.6045 - val_acc: 0.6945 
Epoch 4/15 - 21040/21040 - 341s 16ms/step - loss: 0.5919 - acc: 0.7051 - val_loss: 
0.5991 - val_acc: 0.7027 
Epoch 5/15 - 21040/21040 - 339s 16ms/step - loss: 0.5862 - acc: 0.7074 - val_loss: 
0.5969 - val_acc: 0.7044 
Epoch 6/15 - 21040/21040 - 204s 10ms/step - loss: 0.5817 - acc: 0.7120 - val_loss: 
0.5945 - val_acc: 0.7058 
Epoch 7/15 - 21040/21040 - 160s 8ms/step - loss: 0.5779 - acc: 0.7136 - val_loss: 
0.5983 - val_acc: 0.7033 
Epoch 8/15 - 21040/21040 - 159s 8ms/step - loss: 0.5740 - acc: 0.7155 - val_loss: 
0.6035 - val_acc: 0.7039 
Epoch 9/15 - 21040/21040 - 154s 7ms/step - loss: 0.5716 - acc: 0.7146 - val_loss: 
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Epoch 10/15 - 21040/21040 - 116s 5ms/step - loss: 0.5703 - acc: 0.7165 - val_loss: 
0.6047 - val_acc: 0.7029 
Epoch 11/15 - 21040/21040 - 116s 5ms/step - loss: 0.5651 - acc: 0.7179 - val_loss: 
0.6089 - val_acc: 0.6995 
Epoch 12/15 - 21040/21040 - 116s 5ms/step - loss: 0.5799 - acc: 0.7075 - val_loss: 
0.6104 - val_acc: 0.7001 
Epoch 13/15 - 21040/21040 - 116s 5ms/step - loss: 0.5622 - acc: 0.7184 - val_loss: 
0.6128 - val_acc: 0.7001 
Epoch 14/15 - 21040/21040 - 116s 5ms/step - loss: 0.5579 - acc: 0.7207 - val_loss: 
0.6266 - val_acc: 0.6980 
Epoch 15/15 - 21040/21040 - 116s 5ms/step - loss: 0.5574 - acc: 0.7228 - val_loss: 
0.6206 - val_acc: 0.6985 

 

Dataset 3: 
Train on 2216 samples, validate on 554 samples 
Epoch 1/10 - 2216/2216 - 54s 24ms/step - loss: 0.5697 - acc: 0.6832 - val_loss: 
0.4561 - val_acc: 0.7762 
Epoch 2/10 - 2216/2216 - 53s 24ms/step - loss: 0.4120 - acc: 0.8089 - val_loss: 
0.3012 - val_acc: 0.8899 
Epoch 3/10 - 2216/2216 - 49s 22ms/step - loss: 0.2985 - acc: 0.8883 - val_loss: 
0.4100 - val_acc: 0.8159 
Epoch 4/10 - 2216/2216 - 49s 22ms/step - loss: 0.2612 - acc: 0.9066 - val_loss: 
0.2736 - val_acc: 0.9034 
Epoch 5/10 - 2216/2216 - 48s 22ms/step - loss: 0.2112 - acc: 0.9285 - val_loss: 
0.3041 - val_acc: 0.9007 
Epoch 6/10 - 2216/2216 - 51s 23ms/step - loss: 0.2609 - acc: 0.9075 - val_loss: 
0.2511 - val_acc: 0.9025 
Epoch 7/10 - 2216/2216 - 55s 25ms/step - loss: 0.2031 - acc: 0.9296 - val_loss: 
0.2510 - val_acc: 0.9061 
Epoch 8/10 - 2216/2216 - 48s 22ms/step - loss: 0.1821 - acc: 0.9341 - val_loss: 
0.3400 - val_acc: 0.8556 
Epoch 9/10 - 2216/2216 - 37s 17ms/step - loss: 0.2255 - acc: 0.9264 - val_loss: 
0.2284 - val_acc: 0.9224 
Epoch 10/10 - 2216/2216 - 62s 28ms/step - loss: 0.1606 - acc: 0.9488 - val_loss: 
0.1929 - val_acc: 0.9305 

LSTM Bidirectional 

Dataset 1: 
Train on 41960 samples, validate on 10490 samples 
Epoch 1/10 - 41960/41960 - 588s 14ms/step - loss: 0.0933 - acc: 0.9748 - val_loss: 
0.0536 - val_acc: 0.9827 
Epoch 2/10 - 41960/41960 - 553s 13ms/step - loss: 0.0495 - acc: 0.9826 - val_loss: 
0.0473 - val_acc: 0.9844 
Epoch 3/10 - 41960/41960 - 468s 11ms/step - loss: 0.0381 - acc: 0.9864 - val_loss: 
0.0422 - val_acc: 0.9868 
Epoch 4/10 - 41960/41960 - 426s 10ms/step - loss: 0.0335 - acc: 0.9879 - val_loss: 
0.0412 - val_acc: 0.9874 
Epoch 5/10 - 41960/41960 - 431s 10ms/step - loss: 0.0291 - acc: 0.9897 - val_loss: 
0.0415 - val_acc: 0.9871 
Epoch 6/10 - 41960/41960 - 538s 13ms/step - loss: 0.0260 - acc: 0.9905 - val_loss: 
0.0444 - val_acc: 0.9854 
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Epoch 7/10 - 41960/41960 - 610s 15ms/step - loss: 0.0247 - acc: 0.9914 - val_loss: 
0.0446 - val_acc: 0.9861 
Epoch 8/10 - 41960/41960 - 494s 12ms/step - loss: 0.0228 - acc: 0.9921 - val_loss: 
0.0561 - val_acc: 0.9850 
Epoch 9/10 - 41960/41960 - 424s 10ms/step - loss: 0.0223 - acc: 0.9921 - val_loss: 
0.0451 - val_acc: 0.9852 
Epoch 10/10 - 41960/41960 - 415s 10ms/step - loss: 0.0176 - acc: 0.9938 - val_loss: 
0.0469 - val_acc: 0.9870 

 
Dataset 2: 
Train on 21040 samples, validate on 5261 samples 
Epoch 1/8 - 21040/21040 - 169s 8ms/step - loss: 0.6205 - acc: 0.6838 - val_loss: 
0.6113 - val_acc: 0.6976 
Epoch 2/8 - 21040/21040 - 189s 9ms/step - loss: 0.5986 - acc: 0.7008 - val_loss: 
0.6031 - val_acc: 0.6949 
Epoch 3/8 - 21040/21040 - 183s 9ms/step - loss: 0.5913 - acc: 0.7048 - val_loss: 
0.6027 - val_acc: 0.7001 
Epoch 4/8 - 21040/21040 - 184s 9ms/step - loss: 0.5814 - acc: 0.7102 - val_loss: 
0.6070 - val_acc: 0.6999 
Epoch 5/8 - 21040/21040 - 183s 9ms/step - loss: 0.5778 - acc: 0.7122 - val_loss: 
0.6074 - val_acc: 0.6909 
Epoch 6/8 - 21040/21040 - 184s 9ms/step - loss: 0.5714 - acc: 0.7154 - val_loss: 
0.6041 - val_acc: 0.6999 
Epoch 7/8 - 21040/21040 - 183s 9ms/step - loss: 0.5654 - acc: 0.7188 - val_loss: 
0.6080 - val_acc: 0.6942 
Epoch 8/8 - 21040/21040 - 183s 9ms/step - loss: 0.5609 - acc: 0.7216 - val_loss: 
0.6133 - val_acc: 0.6911 

 
Dataset 3: 
Train on 58620 samples, validate on 14655 samples 
Epoch 1/8 - 58620/58620 - 626s 11ms/step - loss: 0.5414 - acc: 0.7504 - val_loss: 
0.5253 - val_acc: 0.7545 
Epoch 2/8 - 58620/58620 - 511s 9ms/step - loss: 0.5077 - acc: 0.7702 - val_loss: 
0.5055 - val_acc: 0.7702 
Epoch 3/8 - 58620/58620 - 502s 9ms/step - loss: 0.4954 - acc: 0.7806 - val_loss: 
0.5024 - val_acc: 0.7726 
Epoch 4/8 - 58620/58620 - 505s 9ms/step - loss: 0.4903 - acc: 0.7824 - val_loss: 
0.5011 - val_acc: 0.7745 
Epoch 5/8 - 58620/58620 - 502s 9ms/step - loss: 0.4856 - acc: 0.7849 - val_loss: 
0.4998 - val_acc: 0.7773 
Epoch 6/8 - 58620/58620 - 518s 9ms/step - loss: 0.4817 - acc: 0.7874 - val_loss: 
0.4979 - val_acc: 0.7783 
Epoch 7/8 - 58620/58620 - 528s 9ms/step - loss: 0.4772 - acc: 0.7899 - val_loss: 
0.5045 - val_acc: 0.7745 
Epoch 8/8 - 58620/58620 - 571s 10ms/step - loss: 0.4730 - acc: 0.7915 - val_loss: 
0.5029 - val_acc: 0.7752 

 
LSTM Bidirectional + Dropout 

Dataset 1: 
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Train on 41960 samples, validate on 10490 samples 
Epoch 1/10 - 41960/41960 - 564s 13ms/step - loss: 0.1086 - acc: 0.9737 - val_loss: 
0.0634 - val_acc: 0.9724 
Epoch 2/10 - 41960/41960 - 561s 13ms/step - loss: 0.0646 - acc: 0.9786 - val_loss: 
0.0525 - val_acc: 0.9817 
Epoch 3/10 - 41960/41960 - 476s 11ms/step - loss: 0.0472 - acc: 0.9847 - val_loss: 
0.0492 - val_acc: 0.9843 
Epoch 4/10 - 41960/41960 - 432s 10ms/step - loss: 0.0419 - acc: 0.9864 - val_loss: 
0.0396 - val_acc: 0.9863 
Epoch 5/10 - 41960/41960 - 438s 10ms/step - loss: 0.0356 - acc: 0.9884 - val_loss: 
0.0387 - val_acc: 0.9875 
Epoch 6/10 - 41960/41960 - 547s 13ms/step - loss: 0.0328 - acc: 0.9893 - val_loss: 
0.0382 - val_acc: 0.9878 
Epoch 7/10 - 41960/41960 - 619s 15ms/step - loss: 0.0300 - acc: 0.9900 - val_loss: 
0.0457 - val_acc: 0.9848 
Epoch 8/10 - 41960/41960 - 497s 12ms/step - loss: 0.0272 - acc: 0.9908 - val_loss: 
0.0443 - val_acc: 0.9858 
Epoch 9/10 - 41960/41960 - 428s 10ms/step - loss: 0.0249 - acc: 0.9919 - val_loss: 
0.0410 - val_acc: 0.9875 
Epoch 10/10 - 41960/41960 - 409s 10ms/step - loss: 0.0232 - acc: 0.9923 - val_loss: 
0.0468 - val_acc: 0.9859 

 
Dataset 2: 
Train on 21040 samples, validate on 5261 samples 
Epoch 1/8 - 21040/21040 - 199s 9ms/step - loss: 0.6200 - acc: 0.6868 - val_loss: 
0.6185 - val_acc: 0.6807 
Epoch 2/8 - 21040/21040 - 181s 9ms/step - loss: 0.5990 - acc: 0.7042 - val_loss: 
0.6113 - val_acc: 0.6907 
Epoch 3/8 - 21040/21040 - 181s 9ms/step - loss: 0.5896 - acc: 0.7075 - val_loss: 
0.6107 - val_acc: 0.6892 
Epoch 4/8 - 21040/21040 - 180s 9ms/step - loss: 0.5853 - acc: 0.7103 - val_loss: 
0.6149 - val_acc: 0.6881 
Epoch 5/8 - 21040/21040 - 180s 9ms/step - loss: 0.5782 - acc: 0.7170 - val_loss: 
0.6126 - val_acc: 0.6883 
Epoch 6/8 - 21040/21040 - 181s 9ms/step - loss: 0.5707 - acc: 0.7222 - val_loss: 
0.6204 - val_acc: 0.6921 
Epoch 7/8 - 21040/21040 - 180s 9ms/step - loss: 0.5690 - acc: 0.7226 - val_loss: 
0.6192 - val_acc: 0.6921 
Epoch 8/8 - 21040/21040 - 156s 7ms/step - loss: 0.5664 - acc: 0.7234 - val_loss: 
0.6233 - val_acc: 0.6871 

 
Dataset 3: 
Train on 58620 samples, validate on 14655 samples 
Epoch 1/8 - 58620/58620 - 615s 10ms/step - loss: 0.5424 - acc: 0.7508 - val_loss: 
0.5260 - val_acc: 0.7611 
Epoch 2/8 - 58620/58620 - 504s 9ms/step - loss: 0.5078 - acc: 0.7743 - val_loss: 
0.5148 - val_acc: 0.7687 
Epoch 3/8 - 58620/58620 - 503s 9ms/step - loss: 0.4994 - acc: 0.7773 - val_loss: 
0.5106 - val_acc: 0.7677 
Epoch 4/8 - 58620/58620 - 506s 9ms/step - loss: 0.4931 - acc: 0.7823 - val_loss: 
0.5071 - val_acc: 0.7702 



Deep learning for detecting integrity risks in text documents 67 

Churer Schriften zur Informationswissenschaft – Schrift 103 Master Thesis Kalbermatter 

 

 

 

 

Epoch 5/8 - 58620/58620 - 504s 9ms/step - loss: 0.4900 - acc: 0.7845 - val_loss: 
0.5073 - val_acc: 0.7724 
Epoch 6/8 - 58620/58620 - 521s 9ms/step - loss: 0.4864 - acc: 0.7860 - val_loss: 
0.5105 - val_acc: 0.7679 
Epoch 7/8 - 58620/58620 - 553s 9ms/step - loss: 0.4810 - acc: 0.7885 - val_loss: 
0.5073 - val_acc: 0.7725 
Epoch 8/8 - 58620/58620 - 515s 9ms/step - loss: 0.4768 - acc: 0.7909 - val_loss: 
0.5162 - val_acc: 0.7717 

Appendix B Training Results for Pre-Trained Word Embedding Models 

CNN 

Dataset 1: 
Train on 2216 samples, validate on 554 samples 
Epoch 1/10 - 2216/2216 - 65s 29ms/step - loss: 0.4927 - acc: 0.7739 - val_loss: 
0.2307 - val_acc: 0.9260 
Epoch 2/10 - 2216/2216 - 62s 28ms/step - loss: 0.1647 - acc: 0.9393 - val_loss: 
0.1219 - val_acc: 0.9477 
Epoch 3/10 - 2216/2216 - 62s 28ms/step - loss: 0.1018 - acc: 0.9594 - val_loss: 
0.1109 - val_acc: 0.9504 
Epoch 4/10 - 2216/2216 - 61s 28ms/step - loss: 0.0739 - acc: 0.9700 - val_loss: 
0.0919 - val_acc: 0.9693 
Epoch 5/10 - 2216/2216 - 62s 28ms/step - loss: 0.0499 - acc: 0.9871 - val_loss: 
0.0965 - val_acc: 0.9684 
Epoch 6/10 - 2216/2216 - 62s 28ms/step - loss: 0.0325 - acc: 0.9941 - val_loss: 
0.0960 - val_acc: 0.9666 
Epoch 7/10 - 2216/2216 - 62s 28ms/step - loss: 0.0200 - acc: 0.9977 - val_loss: 
0.0910 - val_acc: 0.9693 
Epoch 8/10 - 2216/2216 - 62s 28ms/step - loss: 0.0118 - acc: 0.9993 - val_loss: 
0.0951 - val_acc: 0.9684 
Epoch 9/10 - 2216/2216 - 62s 28ms/step - loss: 0.0079 - acc: 1.0000 - val_loss: 
0.0908 - val_acc: 0.9711 
Epoch 10/10 - 2216/2216 - 57s 26ms/step - loss: 0.0053 - acc: 1.0000 - val_loss: 
0.1085 - val_acc: 0.9657 

 

Dataset 2: 
Train on 979 samples, validate on 244 samples 
Epoch 1/10 - 979/979 - 13s 13ms/step - loss: 0.6684 - acc: 0.6093 - val_loss: 0.6289 
- val_acc: 0.6680 
Epoch 2/10 - 979/979 - 12s 12ms/step - loss: 0.6061 - acc: 0.6747 - val_loss: 0.6530 
- val_acc: 0.6209 
Epoch 3/10 - 979/979 - 12s 12ms/step - loss: 0.5667 - acc: 0.7140 - val_loss: 0.5792 
- val_acc: 0.6988 
Epoch 4/10 - 979/979 - 12s 13ms/step - loss: 0.5244 - acc: 0.7375 - val_loss: 0.6238 
- val_acc: 0.6455 
Epoch 5/10 - 979/979 - 13s 13ms/step - loss: 0.4800 - acc: 0.7840 - val_loss: 0.5737 
- val_acc: 0.7234 
Epoch 6/10 - 979/979 - 13s 13ms/step - loss: 0.4525 - acc: 0.7932 - val_loss: 0.6589 
- val_acc: 0.6352 
Epoch 7/10 - 979/979 - 14s 14ms/step - loss: 0.3798 - acc: 0.8493 - val_loss: 0.6105 
- val_acc: 0.6906 
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Epoch 8/10 - 979/979 - 12s 13ms/step - loss: 0.3265 - acc: 0.8810 - val_loss: 0.6067 
- val_acc: 0.7029 
Epoch 9/10 - 979/979 - 12s 13ms/step - loss: 0.2692 - acc: 0.9162 - val_loss: 0.6210 
- val_acc: 0.6988 
Epoch 10/10 - 979/979 - 12s 12ms/step - loss: 0.2290 - acc: 0.9346 - val_loss: 
0.8152 - val_acc: 0.6148 

 
Dataset 3: 
Train on 2981 samples, validate on 745 samples 
Epoch 1/10 - 2981/2981 - 51s 17ms/step - loss: 0.5233 - acc: 0.7444 - val_loss: 
0.3804 - val_acc: 0.8114 
Epoch 2/10 - 2981/2981 - 54s 18ms/step - loss: 0.3178 - acc: 0.8564 - val_loss: 
0.3194 - val_acc: 0.8483 
Epoch 3/10 - 2981/2981 - 61s 20ms/step - loss: 0.2480 - acc: 0.8900 - val_loss: 
0.3005 - val_acc: 0.8577 
Epoch 4/10 - 2981/2981 - 82s 28ms/step - loss: 0.2205 - acc: 0.9031 - val_loss: 
0.3252 - val_acc: 0.8597 
Epoch 5/10 - 2981/2981 - 83s 28ms/step - loss: 0.1873 - acc: 0.9242 - val_loss: 
0.2962 - val_acc: 0.8758 
Epoch 6/10 - 2981/2981 - 83s 28ms/step - loss: 0.1365 - acc: 0.9520 - val_loss: 
0.3189 - val_acc: 0.8685 
Epoch 7/10 - 2981/2981 - 84s 28ms/step - loss: 0.1052 - acc: 0.9668 - val_loss: 
0.3061 - val_acc: 0.8758 
Epoch 8/10 - 2981/2981 - 83s 28ms/step - loss: 0.0656 - acc: 0.9866 - val_loss: 
0.3218 - val_acc: 0.8805 
Epoch 9/10 - 2981/2981 - 82s 28ms/step - loss: 0.0417 - acc: 0.9928 - val_loss: 
0.3498 - val_acc: 0.8785 
Epoch 10/10 - 2981/2981 - 85s 29ms/step - loss: 0.0246 - acc: 0.9973 - val_loss: 
0.3523 - val_acc: 0.8799 

RCNN 

Dataset 1: 
Train on 2216 samples, validate on 554 samples 
Epoch 1/10 - 2216/2216 - 44s 20ms/step - loss: 0.4142 - acc: 0.7954 - val_loss: 
0.1333 - val_acc: 0.9567 
Epoch 2/10 - 2216/2216 - 40s 18ms/step - loss: 0.1230 - acc: 0.9562 - val_loss: 
0.1138 - val_acc: 0.9567 
Epoch 3/10 - 2216/2216 - 41s 19ms/step - loss: 0.1001 - acc: 0.9610 - val_loss: 
0.1023 - val_acc: 0.9567 
Epoch 4/10 - 2216/2216 - 48s 21ms/step - loss: 0.0784 - acc: 0.9659 - val_loss: 
0.1263 - val_acc: 0.9341 
Epoch 5/10 - 2216/2216 - 48s 22ms/step - loss: 0.0851 - acc: 0.9639 - val_loss: 
0.1072 - val_acc: 0.9540 
Epoch 6/10 - 2216/2216 - 61s 28ms/step - loss: 0.0753 - acc: 0.9713 - val_loss: 
0.1788 - val_acc: 0.9431 
Epoch 7/10 - 2216/2216 - 61s 28ms/step - loss: 0.0775 - acc: 0.9725 - val_loss: 
0.1095 - val_acc: 0.9702 
Epoch 8/10 - 2216/2216 - 62s 28ms/step - loss: 0.0436 - acc: 0.9878 - val_loss: 
0.1004 - val_acc: 0.9711 
Epoch 9/10 - 2216/2216 - 56s 25ms/step - loss: 0.0316 - acc: 0.9926 - val_loss: 
0.1233 - val_acc: 0.9720 
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Epoch 10/10 - 2216/2216 - 56s 25ms/step - loss: 0.0340 - acc: 0.9919 - val_loss: 
0.1118 - val_acc: 0.9702 

 
Dataset 2: 
Train on 979 samples, validate on 244 samples 
Epoch 1/10 - 979/979 - 27s 27ms/step - loss: 0.6733 - acc: 0.6001 - val_loss: 0.6648 
- val_acc: 0.5922 
Epoch 2/10 - 979/979 - 23s 24ms/step - loss: 0.6402 - acc: 0.6195 - val_loss: 0.6522 
- val_acc: 0.6045 
Epoch 3/10 - 979/979 - 23s 24ms/step - loss: 0.5982 - acc: 0.7033 - val_loss: 0.6792 
- val_acc: 0.6516 
Epoch 4/10 - 979/979 - 23s 23ms/step - loss: 0.5872 - acc: 0.6997 - val_loss: 0.6735 
- val_acc: 0.6373 
Epoch 5/10 - 979/979 - 23s 24ms/step - loss: 0.5644 - acc: 0.7114 - val_loss: 0.6341 
- val_acc: 0.6250 
Epoch 6/10 - 979/979 - 23s 24ms/step - loss: 0.5337 - acc: 0.7451 - val_loss: 0.6544 
- val_acc: 0.6352 
Epoch 7/10 - 979/979 - 23s 24ms/step - loss: 0.5164 - acc: 0.7697 - val_loss: 0.6341 
- val_acc: 0.6496 
Epoch 8/10 - 979/979 - 23s 23ms/step - loss: 0.5061 - acc: 0.7732 - val_loss: 0.6388 
- val_acc: 0.6270 
Epoch 9/10 - 979/979 - 23s 23ms/step - loss: 0.4645 - acc: 0.8166 - val_loss: 0.7012 
- val_acc: 0.6496 
Epoch 10/10 - 979/979 - 23s 24ms/step - loss: 0.4447 - acc: 0.8100 - val_loss: 
0.6725 - val_acc: 0.6332 

 
Dataset 3: 
Train on 2981 samples, validate on 745 samples 
Epoch 1/10 - 2981/2981 - 67s 23ms/step - loss: 0.5374 - acc: 0.7196 - val_loss: 
0.4120 - val_acc: 0.7899 
Epoch 2/10 - 2981/2981 - 57s 19ms/step - loss: 0.3408 - acc: 0.8375 - val_loss: 
0.3565 - val_acc: 0.8195 
Epoch 3/10 - 2981/2981 - 56s 19ms/step - loss: 0.2922 - acc: 0.8640 - val_loss: 
0.3578 - val_acc: 0.8255 
Epoch 4/10 - 2981/2981 - 54s 18ms/step - loss: 0.2829 - acc: 0.8678 - val_loss: 
0.3448 - val_acc: 0.8389 
Epoch 5/10 - 2981/2981 - 55s 19ms/step - loss: 0.2373 - acc: 0.8940 - val_loss: 
0.3464 - val_acc: 0.8436 
Epoch 6/10 - 2981/2981 - 58s 19ms/step - loss: 0.2387 - acc: 0.8977 - val_loss: 
0.3490 - val_acc: 0.8275 
Epoch 7/10 - 2981/2981 - 58s 19ms/step - loss: 0.2080 - acc: 0.9136 - val_loss: 
0.3503 - val_acc: 0.8376 
Epoch 8/10 - 2981/2981 - 59s 20ms/step - loss: 0.1716 - acc: 0.9301 - val_loss: 
0.3691 - val_acc: 0.8456 
Epoch 9/10 - 2981/2981 - 58s 19ms/step - loss: 0.1348 - acc: 0.9550 - val_loss: 
0.4188 - val_acc: 0.8228 
Epoch 10/10 - 2981/2981 - 68s 23ms/step - loss: 0.1230 - acc: 0.9577 - val_loss: 
0.4382 - val_acc: 0.8362 

LSTM 

Dataset 1: 
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Train on 2216 samples, validate on 554 samples 
Epoch 1/10 - 2216/2216 - 240s 108ms/step - loss: 0.5546 - acc: 0.6997 - val_loss: 
0.4669 - val_acc: 0.7518 
Epoch 2/10 - 2216/2216 - 108s 49ms/step - loss: 0.3849 - acc: 0.8139 - val_loss: 
0.2705 - val_acc: 0.8980 
Epoch 3/10 - 2216/2216 - 99s 45ms/step - loss: 0.3434 - acc: 0.8606 - val_loss: 
0.3644 - val_acc: 0.8556 
Epoch 4/10 - 2216/2216 - 130s 59ms/step - loss: 0.2131 - acc: 0.9255 - val_loss: 
0.2322 - val_acc: 0.9161 
Epoch 5/10 - 2216/2216 - 51s 23ms/step - loss: 0.1794 - acc: 0.9341 - val_loss: 
0.2056 - val_acc: 0.9215 
Epoch 6/10 - 2216/2216 - 50s 23ms/step - loss: 0.1516 - acc: 0.9470 - val_loss: 
0.2241 - val_acc: 0.9116 
Epoch 7/10 - 2216/2216 - 52s 24ms/step - loss: 0.1393 - acc: 0.9574 - val_loss: 
0.2045 - val_acc: 0.9233 
Epoch 8/10 - 2216/2216 - 55s 25ms/step - loss: 0.1309 - acc: 0.9594 - val_loss: 
0.1746 - val_acc: 0.9359 
Epoch 9/10 - 2216/2216 - 54s 24ms/step - loss: 0.1262 - acc: 0.9571 - val_loss: 
0.1968 - val_acc: 0.9260 
Epoch 10/10 - 2216/2216 - 56s 25ms/step - loss: 0.1188 - acc: 0.9576 - val_loss: 
0.1504 - val_acc: 0.9386 

 
Dataset 2: 
Train on 979 samples, validate on 244 samples 
Epoch 1/10 - 979/979 - 28s 28ms/step - loss: 0.6708 - acc: 0.5756 - val_loss: 
0.6438 - val_acc: 0.6189 
Epoch 2/10 - 979/979 - 25s 26ms/step - loss: 0.6683 - acc: 0.6522 - val_loss: 
0.6084 - val_acc: 0.7336 
Epoch 3/10 - 979/979 - 25s 25ms/step - loss: 0.6368 - acc: 0.6333 - val_loss: 
0.6436 - val_acc: 0.6783 
Epoch 4/10 - 979/979 - 25s 25ms/step - loss: 0.6404 - acc: 0.6629 - val_loss: 
0.6491 - val_acc: 0.6783 
Epoch 5/10 - 979/979 - 25s 25ms/step - loss: 0.6298 - acc: 0.6619 - val_loss: 
0.6344 - val_acc: 0.6701 
Epoch 6/10 - 979/979 - 25s 25ms/step - loss: 0.6122 - acc: 0.6828 - val_loss: 
0.6067 - val_acc: 0.6742 
Epoch 7/10 - 979/979 - 25s 25ms/step - loss: 0.5994 - acc: 0.7099 - val_loss: 
0.6451 - val_acc: 0.6516 
Epoch 8/10 - 979/979 - 25s 25ms/step - loss: 0.5950 - acc: 0.7068 - val_loss: 
0.6254 - val_acc: 0.6619 
Epoch 9/10 - 979/979 - 25s 25ms/step - loss: 0.5718 - acc: 0.7211 - val_loss: 
0.6118 - val_acc: 0.6762 
Epoch 10/10 - 979/979 - 25s 25ms/step - loss: 0.5635 - acc: 0.7298 - val_loss: 
0.6208 - val_acc: 0.6844 

 
Dataset 3: 
Train on 58620 samples, validate on 14655 samples 
Epoch 1/10 - 58620/58620 - 1034s 18ms/step - loss: 0.5456 - acc: 0.7490 - val_loss: 
0.5321 - val_acc: 0.7629 
Epoch 2/10 - 58620/58620 - 931s 16ms/step - loss: 0.5129 - acc: 0.7682 - val_loss: 
0.5186 - val_acc: 0.7662 
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Epoch 3/10 - 58620/58620 - 929s 16ms/step - loss: 0.5021 - acc: 0.7764 - val_loss: 
0.5132 - val_acc: 0.7727 
Epoch 4/10 - 58620/58620 - 982s 17ms/step - loss: 0.4961 - acc: 0.7796 - val_loss: 
0.5060 - val_acc: 0.7735 
Epoch 5/10 - 58620/58620 - 805s 14ms/step - loss: 0.4930 - acc: 0.7810 - val_loss: 
0.5058 - val_acc: 0.7756 
Epoch 6/10 - 58620/58620 - 868s 15ms/step - loss: 0.4893 - acc: 0.7833 - val_loss: 
0.5078 - val_acc: 0.7754 
Epoch 7/10 - 58620/58620 - 715s 12ms/step - loss: 0.4872 - acc: 0.7845 - val_loss: 
0.5060 - val_acc: 0.7778 
Epoch 8/10 - 58620/58620 - 437s 7ms/step - loss: 0.4841 - acc: 0.7869 - val_loss: 
0.5037 - val_acc: 0.7766 
Epoch 9/10 - 58620/58620 - 558s 10ms/step - loss: 0.4813 - acc: 0.7882 - val_loss: 
0.5053 - val_acc: 0.7758 
Epoch 10/10 - 58620/58620 - 561s 10ms/step - loss: 0.4783 - acc: 0.7899 - val_loss: 
0.5086 - val_acc: 0.7756 

Double LSTM 

Dataset 1: 
Train on 2216 samples, validate on 554 samples 
Epoch 1/10 - 2216/2216 - 108s 49ms/step - loss: 0.5414 - acc: 0.7067 - val_loss: 
0.3529 - val_acc: 0.8736 
Epoch 2/10 - 2216/2216 - 106s 48ms/step - loss: 0.2605 - acc: 0.9106 - val_loss: 
0.1956 - val_acc: 0.9422 
Epoch 3/10 - 2216/2216 - 110s 50ms/step - loss: 0.1995 - acc: 0.9343 - val_loss: 
0.2188 - val_acc: 0.9278 
Epoch 4/10 - 2216/2216 - 119s 54ms/step - loss: 0.2369 - acc: 0.9147 - val_loss: 
0.2012 - val_acc: 0.9350 
Epoch 5/10 - 2216/2216 - 119s 54ms/step - loss: 0.1578 - acc: 0.9499 - val_loss: 
0.1797 - val_acc: 0.9440 
Epoch 6/10 - 2216/2216 - 108s 49ms/step - loss: 0.1246 - acc: 0.9596 - val_loss: 
0.1763 - val_acc: 0.9468 
Epoch 7/10 - 2216/2216 - 109s 49ms/step - loss: 0.1495 - acc: 0.9495 - val_loss: 
0.2221 - val_acc: 0.9314 
Epoch 8/10 - 2216/2216 - 104s 47ms/step - loss: 0.1218 - acc: 0.9587 - val_loss: 
0.1064 - val_acc: 0.9639 
Epoch 9/10 - 2216/2216 - 105s 47ms/step - loss: 0.0889 - acc: 0.9707 - val_loss: 
0.1082 - val_acc: 0.9639 
Epoch 10/10 - 2216/2216 - 122s 55ms/step - loss: 0.0886 - acc: 0.9713 - val_loss: 
0.1412 - val_acc: 0.9504 

 
Dataset 2: 
Train on 979 samples, validate on 244 samples 
Epoch 1/10 - 979/979 - 82s 83ms/step - loss: 0.6699 - acc: 0.5822 - val_loss: 0.6461 
- val_acc: 0.5943 
Epoch 2/10 - 979/979 - 60s 61ms/step - loss: 0.6400 - acc: 0.6313 - val_loss: 0.6344 
- val_acc: 0.6619 
Epoch 3/10 - 979/979 - 58s 59ms/step - loss: 0.6239 - acc: 0.6604 - val_loss: 0.6034 
- val_acc: 0.7111 
Epoch 4/10 - 979/979 - 39s 39ms/step - loss: 0.5896 - acc: 0.6936 - val_loss: 0.6040 
- val_acc: 0.6947 
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Epoch 5/10 - 979/979 - 29s 29ms/step - loss: 0.5873 - acc: 0.7074 - val_loss: 0.6190 
- val_acc: 0.6885 
Epoch 6/10 - 979/979 - 29s 29ms/step - loss: 0.5766 - acc: 0.7308 - val_loss: 0.6158 
- val_acc: 0.6803 
Epoch 7/10 - 979/979 - 28s 28ms/step - loss: 0.5567 - acc: 0.7436 - val_loss: 0.5940 
- val_acc: 0.6803 
Epoch 8/10 - 979/979 - 28s 28ms/step - loss: 0.5198 - acc: 0.7564 - val_loss: 0.5959 
- val_acc: 0.6742 
Epoch 9/10 - 979/979 - 28s 28ms/step - loss: 0.4839 - acc: 0.7988 - val_loss: 0.6467 
- val_acc: 0.6762 
Epoch 10/10 - 979/979 - 28s 29ms/step - loss: 0.5070 - acc: 0.7656 - val_loss: 
0.6006 - val_acc: 0.6906 

 
Dataset 3: 
Train on 2594 samples, validate on 648 samples 
Epoch 1/10 - 2594/2594 - 88s 34ms/step - loss: 0.5977 - acc: 0.6654 - val_loss: 
0.4900 - val_acc: 0.7593 
Epoch 2/10 - 2594/2594 - 86s 33ms/step - loss: 0.4497 - acc: 0.7868 - val_loss: 
0.4033 - val_acc: 0.7901 
Epoch 3/10 - 2594/2594 - 86s 33ms/step - loss: 0.4423 - acc: 0.7733 - val_loss: 
0.3861 - val_acc: 0.8110 
Epoch 4/10 - 2594/2594 - 86s 33ms/step - loss: 0.3888 - acc: 0.8071 - val_loss: 
0.3649 - val_acc: 0.8272 
Epoch 5/10 - 2594/2594 - 86s 33ms/step - loss: 0.4053 - acc: 0.8045 - val_loss: 
0.3917 - val_acc: 0.8287 
Epoch 6/10 - 2594/2594 - 83s 32ms/step - loss: 0.3604 - acc: 0.8263 - val_loss: 
0.3511 - val_acc: 0.8434 
Epoch 7/10 - 2594/2594 - 79s 30ms/step - loss: 0.3428 - acc: 0.8387 - val_loss: 
0.4478 - val_acc: 0.7647 
Epoch 8/10 - 2594/2594 - 76s 29ms/step - loss: 0.3817 - acc: 0.8279 - val_loss: 
0.3593 - val_acc: 0.8372 
Epoch 9/10 - 2594/2594 - 76s 29ms/step - loss: 0.3285 - acc: 0.8504 - val_loss: 
0.4564 - val_acc: 0.7870 
Epoch 10/10 - 2594/2594 - 75s 29ms/step - loss: 0.3968 - acc: 0.8196 - val_loss: 
0.4100 - val_acc: 0.8079 

LSTM + Dropout 

Dataset 1: 
Train on 2216 samples, validate on 554 samples 
Epoch 1/10 - 2216/2216 - 56s 25ms/step - loss: 0.5798 - acc: 0.6656 - val_loss: 
0.4566 - val_acc: 0.7690 
Epoch 2/10 - 2216/2216 - 54s 24ms/step - loss: 0.4213 - acc: 0.7902 - val_loss: 
0.4247 - val_acc: 0.7879 
Epoch 3/10 - 2216/2216 - 53s 24ms/step - loss: 0.2891 - acc: 0.8777 - val_loss: 
0.3307 - val_acc: 0.8899 
Epoch 4/10 - 2216/2216 - 53s 24ms/step - loss: 0.3475 - acc: 0.8667 - val_loss: 
0.2622 - val_acc: 0.9269 
Epoch 5/10 - 2216/2216 - 53s 24ms/step - loss: 0.1965 - acc: 0.9357 - val_loss: 
0.1783 - val_acc: 0.9350 
Epoch 6/10 - 2216/2216 - 53s 24ms/step - loss: 0.1828 - acc: 0.9350 - val_loss: 
0.2243 - val_acc: 0.9242 
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Epoch 7/10 - 2216/2216 - 53s 24ms/step - loss: 0.1884 - acc: 0.9339 - val_loss: 
0.1640 - val_acc: 0.9531 
Epoch 8/10 - 2216/2216 - 54s 24ms/step - loss: 0.1463 - acc: 0.9540 - val_loss: 
0.1561 - val_acc: 0.9531 
Epoch 9/10 - 2216/2216 - 53s 24ms/step - loss: 0.1281 - acc: 0.9569 - val_loss: 
0.1311 - val_acc: 0.9540 
Epoch 10/10 - 2216/2216 - 53s 24ms/step - loss: 0.4493 - acc: 0.8421 - val_loss: 
0.4513 - val_acc: 0.7572 

 
Dataset 2: 
Train on 979 samples, validate on 244 samples 
Epoch 1/10 - 979/979 - 28s 28ms/step - loss: 0.6756 - acc: 0.5802 - val_loss: 0.6729 
- val_acc: 0.5861 
Epoch 2/10 - 979/979 - 25s 26ms/step - loss: 0.6517 - acc: 0.5981 - val_loss: 
0.6595 - val_acc: 0.6107 
Epoch 3/10 - 979/979 - 26s 27ms/step - loss: 0.6284 - acc: 0.6573 - val_loss: 
0.6285 - val_acc: 0.6639 
Epoch 4/10 - 979/979 - 25s 25ms/step - loss: 0.6088 - acc: 0.6813 - val_loss: 
0.6118 - val_acc: 0.6926 
Epoch 5/10 - 979/979 - 25s 25ms/step - loss: 0.5918 - acc: 0.7033 - val_loss: 
0.6270 - val_acc: 0.6906 
Epoch 6/10 - 979/979 - 25s 25ms/step - loss: 0.5877 - acc: 0.6900 - val_loss: 
0.6431 - val_acc: 0.6742 
Epoch 7/10 - 979/979 - 25s 25ms/step - loss: 0.5947 - acc: 0.7120 - val_loss: 
0.6337 - val_acc: 0.6906 
Epoch 8/10 - 979/979 - 25s 26ms/step - loss: 0.5630 - acc: 0.7344 - val_loss: 
0.5890 - val_acc: 0.6967 
Epoch 9/10 - 979/979 - 25s 25ms/step - loss: 0.5486 - acc: 0.7400 - val_loss: 
0.5913 - val_acc: 0.7008 
Epoch 10/10 - 979/979 - 25s 25ms/step - loss: 0.5495 - acc: 0.7406 - val_loss: 
0.6056 - val_acc: 0.6906 

 
Dataset 3: 
Train on 2594 samples, validate on 648 samples 
Epoch 1/10 - 2594/2594 - 49s 19ms/step - loss: 0.5809 - acc: 0.6795 - val_loss: 
0.4591 - val_acc: 0.7639 
Epoch 2/10 - 2594/2594 - 49s 19ms/step - loss: 0.4518 - acc: 0.7733 - val_loss: 
0.4096 - val_acc: 0.7832 
Epoch 3/10 - 2594/2594 - 47s 18ms/step - loss: 0.4722 - acc: 0.7546 - val_loss: 
0.4465 - val_acc: 0.7677 
Epoch 4/10 - 2594/2594 - 48s 19ms/step - loss: 0.4087 - acc: 0.8045 - val_loss: 
0.3962 - val_acc: 0.8063 
Epoch 5/10 - 2594/2594 - 69s 27ms/step - loss: 0.4131 - acc: 0.8059 - val_loss: 
0.3795 - val_acc: 0.8094 
Epoch 6/10 - 2594/2594 - 105s 40ms/step - loss: 0.3821 - acc: 0.8169 - val_loss: 
0.3946 - val_acc: 0.8017 
Epoch 7/10 - 2594/2594 - 135s 52ms/step - loss: 0.3621 - acc: 0.8304 - val_loss: 
0.3920 - val_acc: 0.8171 
Epoch 8/10 - 2594/2594 - 165s 63ms/step - loss: 0.3526 - acc: 0.8423 - val_loss: 
0.3767 - val_acc: 0.8110 
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Epoch 9/10 - 2594/2594 - 156s 60ms/step - loss: 0.3416 - acc: 0.8464 - val_loss: 
0.4069 - val_acc: 0.8117 
Epoch 10/10 - 2594/2594 - 155s 60ms/step - loss: 0.3626 - acc: 0.8263 - val_loss: 
0.3882 - val_acc: 0.8025 

 
GRU 

Dataset 1: 
Train on 2216 samples, validate on 554 samples 
Epoch 1/10 - 2216/2216 - 60s 27ms/step - loss: 0.5757 - acc: 0.6611 - val_loss: 
0.4653 - val_acc: 0.7735 
Epoch 2/10 - 2216/2216 - 60s 27ms/step - loss: 0.4307 - acc: 0.7868 - val_loss: 
0.3815 - val_acc: 0.8384 
Epoch 3/10 - 2216/2216 - 70s 32ms/step - loss: 0.4546 - acc: 0.8166 - val_loss: 
0.4102 - val_acc: 0.8014 
Epoch 4/10 - 2216/2216 - 68s 31ms/step - loss: 0.4000 - acc: 0.8116 - val_loss: 
0.3820 - val_acc: 0.8159 
Epoch 5/10 - 2216/2216 - 67s 30ms/step - loss: 0.3139 - acc: 0.8601 - val_loss: 
0.2391 - val_acc: 0.9233 
Epoch 6/10 - 2216/2216 - 65s 29ms/step - loss: 0.4637 - acc: 0.8060 - val_loss: 
0.4084 - val_acc: 0.7969 
Epoch 7/10 - 2216/2216 - 66s 30ms/step - loss: 0.3021 - acc: 0.8770 - val_loss: 
0.2377 - val_acc: 0.9170 
Epoch 8/10 - 2216/2216 - 72s 32ms/step - loss: 0.2163 - acc: 0.9240 - val_loss: 
0.2586 - val_acc: 0.8962 
Epoch 9/10 - 2216/2216 - 68s 31ms/step - loss: 0.1992 - acc: 0.9301 - val_loss: 
0.3247 - val_acc: 0.8782 
Epoch 10/10 - 2216/2216 - 66s 30ms/step - loss: 0.1929 - acc: 0.9323 - val_loss: 
0.2203 - val_acc: 0.9215 

 

Dataset 2: 
Train on 979 samples, validate on 244 samples 
Epoch 1/10 - 979/979 - 30s 30ms/step - loss: 0.6753 - acc: 0.5822 - val_loss: 0.6565 
- val_acc: 0.5902 
Epoch 2/10 - 979/979 - 26s 27ms/step - loss: 0.6529 - acc: 0.6083 - val_loss: 0.6458 
- val_acc: 0.6148 
Epoch 3/10 - 979/979 - 27s 27ms/step - loss: 0.6397 - acc: 0.6236 - val_loss: 0.6509 
- val_acc: 0.6414 
Epoch 4/10 - 979/979 - 28s 29ms/step - loss: 0.6212 - acc: 0.6517 - val_loss: 0.6299 
- val_acc: 0.6557 
Epoch 5/10 - 979/979 - 25s 26ms/step - loss: 0.6036 - acc: 0.6844 - val_loss: 0.6260 
- val_acc: 0.6639 
Epoch 6/10 - 979/979 - 25s 26ms/step - loss: 0.5836 - acc: 0.6900 - val_loss: 0.6180 
- val_acc: 0.6865 
Epoch 7/10 - 979/979 - 25s 26ms/step - loss: 0.5789 - acc: 0.6685 - val_loss: 0.6406 
- val_acc: 0.6537 
Epoch 8/10 - 979/979 - 25s 26ms/step - loss: 0.5672 - acc: 0.7058 - val_loss: 0.6218 
- val_acc: 0.6824 
Epoch 9/10 - 979/979 - 26s 26ms/step - loss: 0.5305 - acc: 0.7523 - val_loss: 0.6387 
- val_acc: 0.6537 
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Epoch 10/10 - 979/979 - 25s 26ms/step - loss: 0.5049 - acc: 0.7600 - val_loss: 
0.7123 - val_acc: 0.6619 

 
Dataset 3: 
Train on 2594 samples, validate on 648 samples 
Epoch 1/10 - 2594/2594 - 60s 23ms/step - loss: 0.5779 - acc: 0.6581 - val_loss: 
0.5306 - val_acc: 0.6952 
Epoch 2/10 - 2594/2594 - 57s 22ms/step - loss: 0.4566 - acc: 0.7614 - val_loss: 
0.4639 - val_acc: 0.7793 
Epoch 3/10 - 2594/2594 - 57s 22ms/step - loss: 0.4106 - acc: 0.8013 - val_loss: 
0.4706 - val_acc: 0.7446 
Epoch 4/10 - 2594/2594 - 59s 23ms/step - loss: 0.4057 - acc: 0.8076 - val_loss: 
0.5082 - val_acc: 0.7153 
Epoch 5/10 - 2594/2594 - 57s 22ms/step - loss: 0.3896 - acc: 0.8117 - val_loss: 
0.6564 - val_acc: 0.7554 
Epoch 6/10 - 2594/2594 - 58s 22ms/step - loss: 0.3924 - acc: 0.8138 - val_loss: 
0.4359 - val_acc: 0.8002 
Epoch 7/10 - 2594/2594 - 57s 22ms/step - loss: 0.3532 - acc: 0.8371 - val_loss: 
0.4176 - val_acc: 0.8040 
Epoch 8/10 - 2594/2594 - 56s 22ms/step - loss: 0.3344 - acc: 0.8479 - val_loss: 
0.4726 - val_acc: 0.8063 
Epoch 9/10 - 2594/2594 - 58s 22ms/step - loss: 0.3169 - acc: 0.8574 - val_loss: 
0.4169 - val_acc: 0.7924 
Epoch 10/10 - 2594/2594 - 57s 22ms/step - loss: 0.3077 - acc: 0.8568 - val_loss: 
0.4107 - val_acc: 0.7955 

Double GRU 

Dataset 1: 
Train on 2216 samples, validate on 554 samples 
Epoch 1/10 - 2216/2216 - 148s 67ms/step - loss: 0.5566 - acc: 0.6983 - val_loss: 
0.4373 - val_acc: 0.7816 
Epoch 2/10 - 2216/2216 - 135s 61ms/step - loss: 0.4059 - acc: 0.8105 - val_loss: 
0.3566 - val_acc: 0.8186 
Epoch 3/10 - 2216/2216 - 139s 63ms/step - loss: 0.2607 - acc: 0.8879 - val_loss: 
0.3159 - val_acc: 0.8899 
Epoch 4/10 - 2216/2216 - 136s 62ms/step - loss: 0.3108 - acc: 0.8791 - val_loss: 
0.2079 - val_acc: 0.9350 
Epoch 5/10 - 2216/2216 - 90s 40ms/step - loss: 0.1621 - acc: 0.9429 - val_loss: 
0.2016 - val_acc: 0.9206 
Epoch 6/10 - 2216/2216 - 63s 28ms/step - loss: 0.1468 - acc: 0.9533 - val_loss: 
0.1898 - val_acc: 0.9386 
Epoch 7/10 - 2216/2216 - 93s 42ms/step - loss: 0.1122 - acc: 0.9605 - val_loss: 
0.1792 - val_acc: 0.9350 
Epoch 8/10 - 2216/2216 - 102s 46ms/step - loss: 0.1056 - acc: 0.9585 - val_loss: 
0.2645 - val_acc: 0.9070 
Epoch 9/10 - 2216/2216 - 99s 45ms/step - loss: 0.0946 - acc: 0.9625 - val_loss: 
0.1451 - val_acc: 0.9495 
Epoch 10/10 - 2216/2216 - 112s 50ms/step - loss: 0.0738 - acc: 0.9707 - val_loss: 
0.1333 - val_acc: 0.9513 

 
Dataset 2: 
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Train on 979 samples, validate on 244 samples 
Epoch 1/10 - 979/979 - 28s 28ms/step - loss: 0.6741 - acc: 0.5695 - val_loss: 0.6400 
- val_acc: 0.6168 
Epoch 2/10 - 979/979 - 25s 25ms/step - loss: 0.6456 - acc: 0.6256 - val_loss: 0.6344 
- val_acc: 0.6250 
Epoch 3/10 - 979/979 - 25s 25ms/step - loss: 0.6281 - acc: 0.6404 - val_loss: 0.6610 
- val_acc: 0.6270 
Epoch 4/10 - 979/979 - 25s 25ms/step - loss: 0.6057 - acc: 0.6619 - val_loss: 0.6450 
- val_acc: 0.6537 
Epoch 5/10 - 979/979 - 25s 25ms/step - loss: 0.5716 - acc: 0.7028 - val_loss: 0.6592 
- val_acc: 0.6537 
Epoch 6/10 - 979/979 - 25s 25ms/step - loss: 0.5555 - acc: 0.7079 - val_loss: 0.6752 
- val_acc: 0.6332 
Epoch 7/10 - 979/979 - 25s 25ms/step - loss: 0.5042 - acc: 0.7625 - val_loss: 0.7287 
- val_acc: 0.5840 
Epoch 8/10 - 979/979 - 25s 25ms/step - loss: 0.4681 - acc: 0.7993 - val_loss: 0.8457 
- val_acc: 0.5861 
Epoch 9/10 - 979/979 - 25s 25ms/step - loss: 0.4193 - acc: 0.8136 - val_loss: 0.8739 
- val_acc: 0.5410 
Epoch 10/10 - 979/979 - 25s 25ms/step - loss: 0.3667 - acc: 0.8504 - val_loss: 
0.9597 - val_acc: 0.6004 

 

Dataset 3: 
Train on 2594 samples, validate on 648 samples 
Epoch 1/10 - 2594/2594 - 102s 39ms/step - loss: 0.5832 - acc: 0.6598 - val_loss: 
0.4851 - val_acc: 0.7546 
Epoch 2/10 - 2594/2594 - 98s 38ms/step - loss: 0.4705 - acc: 0.7537 - val_loss: 
0.4287 - val_acc: 0.7878 
Epoch 3/10 - 2594/2594 - 98s 38ms/step - loss: 0.4047 - acc: 0.7978 - val_loss: 
0.3416 - val_acc: 0.8295 
Epoch 4/10 - 2594/2594 - 97s 37ms/step - loss: 0.3899 - acc: 0.8184 - val_loss: 
0.3606 - val_acc: 0.8210 
Epoch 5/10 - 2594/2594 - 97s 37ms/step - loss: 0.3549 - acc: 0.8364 - val_loss: 
0.3969 - val_acc: 0.7963 
Epoch 6/10 - 2594/2594 - 97s 38ms/step - loss: 0.3502 - acc: 0.8410 - val_loss: 
0.3771 - val_acc: 0.8133 
Epoch 7/10 - 2594/2594 - 97s 38ms/step - loss: 0.3209 - acc: 0.8583 - val_loss: 
0.3864 - val_acc: 0.8063 
Epoch 8/10 - 2594/2594 - 98s 38ms/step - loss: 0.3126 - acc: 0.8614 - val_loss: 
0.3515 - val_acc: 0.8372 
Epoch 9/10 - 2594/2594 - 97s 38ms/step - loss: 0.2803 - acc: 0.8741 - val_loss: 
0.3940 - val_acc: 0.8094 
Epoch 10/10 - 2594/2594 - 97s 37ms/step - loss: 0.2573 - acc: 0.8851 - val_loss: 
0.3913 - val_acc: 0.8218 

GRU + Dropout 

Dataset 1: 
Train on 2216 samples, validate on 554 samples 
Epoch 1/10 - 2216/2216 - 54s 24ms/step - loss: 0.5697 - acc: 0.6832 - val_loss: 
0.4561 - val_acc: 0.7762 
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Epoch 2/10 - 2216/2216 - 53s 24ms/step - loss: 0.4120 - acc: 0.8089 - val_loss: 
0.3012 - val_acc: 0.8899 
Epoch 3/10 - 2216/2216 - 49s 22ms/step - loss: 0.2985 - acc: 0.8883 - val_loss: 
0.4100 - val_acc: 0.8159 
Epoch 4/10 - 2216/2216 - 49s 22ms/step - loss: 0.2612 - acc: 0.9066 - val_loss: 
0.2736 - val_acc: 0.9034 
Epoch 5/10 - 2216/2216 - 48s 22ms/step - loss: 0.2112 - acc: 0.9285 - val_loss: 
0.3041 - val_acc: 0.9007 
Epoch 6/10 - 2216/2216 - 51s 23ms/step - loss: 0.2609 - acc: 0.9075 - val_loss: 
0.2511 - val_acc: 0.9025 
Epoch 7/10 - 2216/2216 - 55s 25ms/step - loss: 0.2031 - acc: 0.9296 - val_loss: 
0.2510 - val_acc: 0.9061 
Epoch 8/10 - 2216/2216 - 48s 22ms/step - loss: 0.1821 - acc: 0.9341 - val_loss: 
0.3400 - val_acc: 0.8556 
Epoch 9/10 - 2216/2216 - 37s 17ms/step - loss: 0.2255 - acc: 0.9264 - val_loss: 
0.2284 - val_acc: 0.9224 
Epoch 10/10 - 2216/2216 - 62s 28ms/step - loss: 0.1606 - acc: 0.9488 - val_loss: 
0.1929 - val_acc: 0.9305 

 

Dataset 2: 
Train on 979 samples, validate on 244 samples 
Epoch 1/10 - 979/979 - 30s 31ms/step - loss: 0.6769 - acc: 0.5659 - val_loss: 0.6524 
- val_acc: 0.6352 
Epoch 2/10 - 979/979 - 26s 27ms/step - loss: 0.6484 - acc: 0.6078 - val_loss: 0.6566 
- val_acc: 0.6311 
Epoch 3/10 - 979/979 - 26s 27ms/step - loss: 0.6294 - acc: 0.6445 - val_loss: 0.6582 
- val_acc: 0.6352 
Epoch 4/10 - 979/979 - 26s 27ms/step - loss: 0.5966 - acc: 0.7012 - val_loss: 0.6522 
- val_acc: 0.6537 
Epoch 5/10 - 979/979 - 26s 26ms/step - loss: 0.5882 - acc: 0.6803 - val_loss: 0.6739 
- val_acc: 0.6168 
Epoch 6/10 - 979/979 - 26s 26ms/step - loss: 0.5949 - acc: 0.6731 - val_loss: 0.6306 
- val_acc: 0.6660 
Epoch 7/10 - 979/979 - 26s 27ms/step - loss: 0.5606 - acc: 0.7472 - val_loss: 0.6343 
- val_acc: 0.6578 
Epoch 8/10 - 979/979 - 26s 26ms/step - loss: 0.5494 - acc: 0.7482 - val_loss: 0.6467 
- val_acc: 0.6824 
Epoch 9/10 - 979/979 - 26s 26ms/step - loss: 0.5293 - acc: 0.7564 - val_loss: 0.6350 
- val_acc: 0.6742 
Epoch 10/10 - 979/979 - 26s 27ms/step - loss: 0.5161 - acc: 0.7559 - val_loss: 
0.6395 - val_acc: 0.6844 

 
Dataset 3: 
Train on 2216 samples, validate on 554 samples 
Epoch 1/10 - 2216/2216 - 54s 24ms/step - loss: 0.5697 - acc: 0.6832 - val_loss: 
0.4561 - val_acc: 0.7762 
Epoch 2/10 - 2216/2216 - 53s 24ms/step - loss: 0.4120 - acc: 0.8089 - val_loss: 
0.3012 - val_acc: 0.8899 
Epoch 3/10 - 2216/2216 - 49s 22ms/step - loss: 0.2985 - acc: 0.8883 - val_loss: 
0.4100 - val_acc: 0.8159 
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Epoch 4/10 - 2216/2216 - 49s 22ms/step - loss: 0.2612 - acc: 0.9066 - val_loss: 
0.2736 - val_acc: 0.9034 
Epoch 5/10 - 2216/2216 - 48s 22ms/step - loss: 0.2112 - acc: 0.9285 - val_loss: 
0.3041 - val_acc: 0.9007 
Epoch 6/10 - 2216/2216 - 51s 23ms/step - loss: 0.2609 - acc: 0.9075 - val_loss: 
0.2511 - val_acc: 0.9025 
Epoch 7/10 - 2216/2216 - 55s 25ms/step - loss: 0.2031 - acc: 0.9296 - val_loss: 
0.2510 - val_acc: 0.9061 
Epoch 8/10 - 2216/2216 - 48s 22ms/step - loss: 0.1821 - acc: 0.9341 - val_loss: 
0.3400 - val_acc: 0.8556 
Epoch 9/10 - 2216/2216 - 37s 17ms/step - loss: 0.2255 - acc: 0.9264 - val_loss: 
0.2284 - val_acc: 0.9224 
Epoch 10/10 - 2216/2216 - 62s 28ms/step - loss: 0.1606 - acc: 0.9488 - val_loss: 
0.1929 - val_acc: 0.9305 

LSTM Bidirectional 

Dataset 1: 
Train on 2216 samples, validate on 554 samples 
Epoch 1/10 - 2216/2216 - 48s 22ms/step - loss: 0.6151 - acc: 0.6264 - val_loss: 
0.4690 - val_acc: 0.8060 
Epoch 2/10 - 2216/2216 - 47s 21ms/step - loss: 0.3433 - acc: 0.8633 - val_loss: 
0.2370 - val_acc: 0.9206 
Epoch 3/10 - 2216/2216 - 47s 21ms/step - loss: 0.3179 - acc: 0.8766 - val_loss: 
0.3443 - val_acc: 0.8529 
Epoch 4/10 - 2216/2216 - 46s 21ms/step - loss: 0.2662 - acc: 0.8962 - val_loss: 
0.3123 - val_acc: 0.8628 
Epoch 5/10 - 2216/2216 - 47s 21ms/step - loss: 0.1761 - acc: 0.9413 - val_loss: 
0.1956 - val_acc: 0.9332 
Epoch 6/10 - 2216/2216 - 89s 40ms/step - loss: 0.3663 - acc: 0.8355 - val_loss: 
0.3608 - val_acc: 0.8727 
Epoch 7/10 - 2216/2216 - 116s 52ms/step - loss: 0.2910 - acc: 0.9084 - val_loss: 
0.2417 - val_acc: 0.9269 
Epoch 8/10 - 2216/2216 - 124s 56ms/step - loss: 0.2058 - acc: 0.9319 - val_loss: 
0.3107 - val_acc: 0.8827 
Epoch 9/10 - 2216/2216 - 106s 48ms/step - loss: 0.1946 - acc: 0.9380 - val_loss: 
0.2584 - val_acc: 0.9070 
Epoch 10/10 - 2216/2216 - 106s 48ms/step - loss: 0.1943 - acc: 0.9330 - val_loss: 
0.2132 - val_acc: 0.9224 

 
Dataset 2: 
Train on 979 samples, validate on 244 samples 
Epoch 1/10 - 979/979 - 23s 23ms/step - loss: 0.6731 - acc: 0.5689 - val_loss: 0.6678 
- val_acc: 0.6025 
Epoch 2/10 - 979/979 - 23s 23ms/step - loss: 0.6500 - acc: 0.5889 - val_loss: 0.6486 
- val_acc: 0.5984 
Epoch 3/10 - 979/979 - 22s 22ms/step - loss: 0.6311 - acc: 0.6287 - val_loss: 0.6357 
- val_acc: 0.6578 
Epoch 4/10 - 979/979 - 24s 24ms/step - loss: 0.6323 - acc: 0.6394 - val_loss: 0.6436 
- val_acc: 0.6230 
Epoch 5/10 - 979/979 - 24s 24ms/step - loss: 0.6158 - acc: 0.6680 - val_loss: 0.6399 
- val_acc: 0.6721 
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Epoch 6/10 - 979/979 - 23s 23ms/step - loss: 0.6026 - acc: 0.6716 - val_loss: 0.6369 
- val_acc: 0.6926 
Epoch 7/10 - 979/979 - 20s 20ms/step - loss: 0.5711 - acc: 0.7155 - val_loss: 0.6101 
- val_acc: 0.6598 
Epoch 8/10 - 979/979 - 20s 20ms/step - loss: 0.5673 - acc: 0.7109 - val_loss: 0.6289 
- val_acc: 0.6947 
Epoch 9/10 - 979/979 - 20s 20ms/step - loss: 0.5748 - acc: 0.6966 - val_loss: 0.6299 
- val_acc: 0.6803 
Epoch 10/10 - 979/979 - 20s 20ms/step - loss: 0.5468 - acc: 0.7508 - val_loss: 
0.6072 - val_acc: 0.7234 

 
Dataset 3: 
Train on 2594 samples, validate on 648 samples 
Epoch 1/10 - 2594/2594 - 74s 29ms/step - loss: 0.6162 - acc: 0.6332 - val_loss: 
0.4812 - val_acc: 0.7685 
Epoch 2/10 - 2594/2594 - 69s 27ms/step - loss: 0.4705 - acc: 0.7741 - val_loss: 
0.4253 - val_acc: 0.8156 
Epoch 3/10 - 2594/2594 - 69s 27ms/step - loss: 0.5116 - acc: 0.7456 - val_loss: 
0.4651 - val_acc: 0.7716 
Epoch 4/10 - 2594/2594 - 70s 27ms/step - loss: 0.4536 - acc: 0.7724 - val_loss: 
0.4034 - val_acc: 0.8194 
Epoch 5/10 - 2594/2594 - 70s 27ms/step - loss: 0.4711 - acc: 0.7274 - val_loss: 
0.4943 - val_acc: 0.7454 
Epoch 6/10 - 2594/2594 - 70s 27ms/step - loss: 0.4882 - acc: 0.7440 - val_loss: 
0.4616 - val_acc: 0.7639 
Epoch 7/10 - 2594/2594 - 70s 27ms/step - loss: 0.4668 - acc: 0.7513 - val_loss: 
0.4414 - val_acc: 0.7870 
Epoch 8/10 - 2594/2594 - 70s 27ms/step - loss: 0.4202 - acc: 0.7901 - val_loss: 
0.4122 - val_acc: 0.8225 
Epoch 9/10 - 2594/2594 - 70s 27ms/step - loss: 0.4268 - acc: 0.7984 - val_loss: 
0.4097 - val_acc: 0.8079 
Epoch 10/10 - 2594/2594 - 70s 27ms/step - loss: 0.3903 - acc: 0.8146 - val_loss: 
0.3964 - val_acc: 0.8171 

LSTM Bidirectional + Dropout 

Dataset 1: 
Train on 2216 samples, validate on 554 samples 
Epoch 1/10 - 2216/2216 - 79s 36ms/step - loss: 0.6361 - acc: 0.6094 - val_loss: 
0.5212 - val_acc: 0.7924 
Epoch 2/10 - 2216/2216 - 55s 25ms/step - loss: 0.4363 - acc: 0.7994 - val_loss: 
0.3462 - val_acc: 0.8403 
Epoch 3/10 - 2216/2216 - 55s 25ms/step - loss: 0.2954 - acc: 0.8858 - val_loss: 
0.4498 - val_acc: 0.8014 
Epoch 4/10 - 2216/2216 - 83s 37ms/step - loss: 0.2545 - acc: 0.9104 - val_loss: 
0.2354 - val_acc: 0.9106 
Epoch 5/10 - 2216/2216 - 90s 41ms/step - loss: 0.1808 - acc: 0.9355 - val_loss: 
0.1621 - val_acc: 0.9422 
Epoch 6/10 - 2216/2216 - 88s 40ms/step - loss: 0.1670 - acc: 0.9438 - val_loss: 
0.2523 - val_acc: 0.9116 
Epoch 7/10 - 2216/2216 - 89s 40ms/step - loss: 0.1621 - acc: 0.9454 - val_loss: 
0.1655 - val_acc: 0.9449 
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Epoch 8/10 - 2216/2216 - 94s 42ms/step - loss: 0.2086 - acc: 0.9276 - val_loss: 
0.1940 - val_acc: 0.9422 
Epoch 9/10 - 2216/2216 - 92s 41ms/step - loss: 0.1855 - acc: 0.9404 - val_loss: 
0.1577 - val_acc: 0.9495 
Epoch 10/10 - 2216/2216 - 103s 47ms/step - loss: 0.1487 - acc: 0.9497 - val_loss: 
0.1340 - val_acc: 0.9522 

 
Dataset 2: 
Train on 979 samples, validate on 244 samples 
Epoch 1/10 - 979/979 - 48s 49ms/step - loss: 0.6706 - acc: 0.5832 - val_loss: 0.6766 
- val_acc: 0.5779 
Epoch 2/10 - 979/979 - 40s 41ms/step - loss: 0.6425 - acc: 0.6021 - val_loss: 0.6677 
- val_acc: 0.5779 
Epoch 3/10 - 979/979 - 40s 41ms/step - loss: 0.6941 - acc: 0.6384 - val_loss: 0.6910 
- val_acc: 0.5779 
Epoch 4/10 - 979/979 - 40s 41ms/step - loss: 0.6413 - acc: 0.6272 - val_loss: 0.6634 
- val_acc: 0.6414 
Epoch 5/10 - 979/979 - 38s 39ms/step - loss: 0.6222 - acc: 0.6762 - val_loss: 0.6999 
- val_acc: 0.5779 
Epoch 6/10 - 979/979 - 35s 36ms/step - loss: 0.6498 - acc: 0.6037 - val_loss: 0.6628 
- val_acc: 0.6455 
Epoch 7/10 - 979/979 - 35s 36ms/step - loss: 0.6059 - acc: 0.7048 - val_loss: 0.6471 
- val_acc: 0.6660 
Epoch 8/10 - 979/979 - 35s 36ms/step - loss: 0.5987 - acc: 0.6788 - val_loss: 0.7114 
- val_acc: 0.5861 
Epoch 9/10 - 979/979 - 35s 36ms/step - loss: 0.6124 - acc: 0.6624 - val_loss: 0.6651 
- val_acc: 0.6025 
Epoch 10/10 - 979/979 - 35s 36ms/step - loss: 0.5941 - acc: 0.7125 - val_loss: 
0.6669 - val_acc: 0.6393 

 
Dataset 3: 
Train on 2594 samples, validate on 648 samples 
Epoch 1/10 - 2594/2594 - 116s 45ms/step - loss: 0.6239 - acc: 0.6239 - val_loss: 
0.5130 - val_acc: 0.7392 
Epoch 2/10 - 2594/2594 - 105s 40ms/step - loss: 0.4985 - acc: 0.7373 - val_loss: 
0.4759 - val_acc: 0.7546 
Epoch 3/10 - 2594/2594 - 105s 40ms/step - loss: 0.4357 - acc: 0.7758 - val_loss: 
0.4396 - val_acc: 0.7739 
Epoch 4/10 - 2594/2594 - 105s 40ms/step - loss: 0.4306 - acc: 0.8005 - val_loss: 
0.9335 - val_acc: 0.6289 
Epoch 5/10 - 2594/2594 - 105s 40ms/step - loss: 0.5702 - acc: 0.6939 - val_loss: 
0.5154 - val_acc: 0.7215 
Epoch 6/10 - 2594/2594 - 108s 42ms/step - loss: 0.4834 - acc: 0.7513 - val_loss: 
0.4871 - val_acc: 0.7446 
Epoch 7/10 - 2594/2594 - 109s 42ms/step - loss: 0.4443 - acc: 0.7824 - val_loss: 
0.5192 - val_acc: 0.7400 
Epoch 8/10 - 2594/2594 - 110s 42ms/step - loss: 0.4394 - acc: 0.7839 - val_loss: 
0.4273 - val_acc: 0.8009 
Epoch 9/10 - 2594/2594 - 114s 44ms/step - loss: 0.3951 - acc: 0.8082 - val_loss: 
0.4474 - val_acc: 0.7716 
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Epoch 10/10 - 2594/2594 - 109s 42ms/step - loss: 0.3902 - acc: 0.8150 - val_loss: 
0.4276 - val_acc: 0.7971 

Appendix C Training Results for Additional Word Embedding Models 

Various Custom Word Embedding Sizes 

Top 500 Words: 

Without stopwords: 
Train on 58620 samples, validate on 14655 samples 
Epoch 1/4 - 58620/58620 - 102s 2ms/step - loss: 0.5257 - acc: 0.7625 - val_loss: 
0.5080 - val_acc: 0.7743 
Epoch 2/4 - 58620/58620 - 99s 2ms/step - loss: 0.5018 - acc: 0.7756 - val_loss: 
0.5016 - val_acc: 0.7750 
Epoch 3/4 - 58620/58620 - 99s 2ms/step - loss: 0.4947 - acc: 0.7791 - val_loss: 
0.4970 - val_acc: 0.7788 
Epoch 4/4 - 58620/58620 - 100s 2ms/step - loss: 0.4895 - acc: 0.7824 - val_loss: 
0.4963 - val_acc: 0.7797 
14655/14655 - 6s 391us/step 
Test score: 0.4962786031985437 
Test accuracy: 0.7797338792302428 

 
With stopwords: 
Train on 58620 samples, validate on 14655 samples 
Epoch 1/4 
58620/58620 - 262s 4ms/step - loss: 0.5212 - acc: 0.7652 - val_loss: 0.5238 - 
val_acc: 0.7701 
Epoch 2/4 
58620/58620 - 320s 5ms/step - loss: 0.4965 - acc: 0.7793 - val_loss: 0.5164 - 
val_acc: 0.7694 
Epoch 3/4 
58620/58620 - 325s 6ms/step - loss: 0.4874 - acc: 0.7840 - val_loss: 0.5058 - 
val_acc: 0.7716 
Epoch 4/4 
58620/58620 - 323s 6ms/step - loss: 0.4812 - acc: 0.7878 - val_loss: 0.5041 - 
val_acc: 0.7730 
14655/14655 - 20s 1ms/step 
Test score: 0.5040943488819287 
Test accuracy: 0.773046741742642 

 
Top 1000 Words: 

Without stopwords: 
Train on 58620 samples, validate on 14655 samples 
Epoch 1/4 
58620/58620 - 100s 2ms/step - loss: 0.5097 - acc: 0.7719 - val_loss: 0.4997 - 
val_acc: 0.7761 
Epoch 2/4 
58620/58620 - 130s 2ms/step - loss: 0.4810 - acc: 0.7870 - val_loss: 0.4957 - 
val_acc: 0.7800 
Epoch 3/4 



Deep learning for detecting integrity risks in text documents 82 

Churer Schriften zur Informationswissenschaft – Schrift 103 Master Thesis Kalbermatter 

 

 

 

 

58620/58620 - 168s 3ms/step - loss: 0.4697 - acc: 0.7930 - val_loss: 0.4924 - 
val_acc: 0.7799 
Epoch 4/4 
58620/58620 - 169s 3ms/step - loss: 0.4593 - acc: 0.7994 - val_loss: 0.4909 - 
val_acc: 0.7795 
14655/14655 - 10s 686us/step 
Test score: 0.49087402938942337 
Test accuracy: 0.7795291709476915 

 
With stopwords: 
Train on 58620 samples, validate on 14655 samples 
Epoch 1/4 
58620/58620 - 273s 5ms/step - loss: 0.5108 - acc: 0.7725 - val_loss: 0.5003 - 
val_acc: 0.7836 
Epoch 2/4 
58620/58620 - 322s 5ms/step - loss: 0.4789 - acc: 0.7888 - val_loss: 0.4967 - 
val_acc: 0.7806 
Epoch 3/4 
58620/58620 - 326s 6ms/step - loss: 0.4685 - acc: 0.7952 - val_loss: 0.4836 - 
val_acc: 0.7861 
Epoch 4/4 
58620/58620 - 323s 6ms/step - loss: 0.4563 - acc: 0.8019 - val_loss: 0.4911 - 
val_acc: 0.7845 
14655/14655 - 15s 1ms/step 
Test score: 0.4911303585969072 
Test accuracy: 0.7845104059559702 

 
Top 1500 Words: 

Without stopwords: 
Train on 58620 samples, validate on 14655 samples 
Epoch 1/4 
58620/58620 - 169s 3ms/step - loss: 0.5080 - acc: 0.7730 - val_loss: 0.4851 - 
val_acc: 0.7887 
Epoch 2/4 
58620/58620 - 170s 3ms/step - loss: 0.4719 - acc: 0.7941 - val_loss: 0.4792 - 
val_acc: 0.7885 
Epoch 3/4 
58620/58620 - 124s 2ms/step - loss: 0.4562 - acc: 0.8023 - val_loss: 0.4865 - 
val_acc: 0.7897 
Epoch 4/4 
58620/58620 - 88s 2ms/step - loss: 0.4410 - acc: 0.8097 - val_loss: 0.4833 - val_acc: 
0.7898 
14655/14655 - 5s 353us/step 
Test score: 0.48325673144085746 
Test accuracy: 0.7897645854819801 

 
With stopwords: 
Train on 58620 samples, validate on 14655 samples 
Epoch 1/4 
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58620/58620 - 715s 12ms/step - loss: 0.5094 - acc: 0.7715 - val_loss: 0.4851 - 
val_acc: 0.7852 
Epoch 2/4 
58620/58620 - 493s 8ms/step - loss: 0.4719 - acc: 0.7930 - val_loss: 0.4901 - 
val_acc: 0.7848 
Epoch 3/4 
58620/58620 - 323s 6ms/step - loss: 0.4571 - acc: 0.8008 - val_loss: 0.4731 - 
val_acc: 0.7907 
Epoch 4/4 
58620/58620 - 329s 6ms/step - loss: 0.4426 - acc: 0.8086 - val_loss: 0.4719 - 
val_acc: 0.7950 
14655/14655 - 19s 1ms/step 
Test score: 0.471925805368264 
Test accuracy: 0.7950187648737728 

 
 

Top 2000 Words: 
Without stopwords: 
Train on 58620 samples, validate on 14655 samples 
Epoch 1/4 
58620/58620 - 384s 7ms/step - loss: 0.5056 - acc: 0.7731 - val_loss: 0.4870 - 
val_acc: 0.7929 
Epoch 2/4 
58620/58620 - 407s 7ms/step - loss: 0.4672 - acc: 0.7945 - val_loss: 0.4711 - 
val_acc: 0.7952 
Epoch 3/4 
58620/58620 - 540s 9ms/step - loss: 0.4476 - acc: 0.8049 - val_loss: 0.4783 - 
val_acc: 0.7933 
Epoch 4/4 
58620/58620 - 760s 13ms/step - loss: 0.4289 - acc: 0.8154 - val_loss: 0.4896 - 
val_acc: 0.7940 
14655/14655 - 43s 3ms/step 
Test score: 0.489629916559507 
Test accuracy: 0.7939952234854188 

 
With stopwords: 
Epoch 1/4 
58620/58620 - 734s 13ms/step - loss: 0.5044 - acc: 0.7749 - val_loss: 0.4934 - 
val_acc: 0.7829 
Epoch 2/4 
58620/58620 - 415s 7ms/step - loss: 0.4636 - acc: 0.7973 - val_loss: 0.4692 - 
val_acc: 0.7896 
Epoch 3/4 
58620/58620 - 320s 5ms/step - loss: 0.4467 - acc: 0.8072 - val_loss: 0.4788 - 
val_acc: 0.7851 
Epoch 4/4 
58620/58620 - 303s 5ms/step - loss: 0.4301 - acc: 0.8168 - val_loss: 0.4783 - 
val_acc: 0.7857 
14655/14655 - 6s 393us/step 
Test score: 0.47832598543053234 
Test accuracy: 0.7856704196682647 
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Top 2500 Words: 
Without stopwords: 
Train on 58620 samples, validate on 14655 samples 
Epoch 1/4 
58620/58620 - 404s 7ms/step - loss: 0.5043 - acc: 0.7749 - val_loss: 0.4969 - 
val_acc: 0.7853 
Epoch 2/4 
58620/58620 - 410s 7ms/step - loss: 0.4598 - acc: 0.7988 - val_loss: 0.4790 - 
val_acc: 0.7907 
Epoch 3/4 
58620/58620 - 600s 10ms/step - loss: 0.4390 - acc: 0.8110 - val_loss: 0.4814 - 
val_acc: 0.7876 
Epoch 4/4 
58620/58620 - 706s 12ms/step - loss: 0.4186 - acc: 0.8217 - val_loss: 0.4879 - 
val_acc: 0.7861 
14655/14655 - 24s 2ms/step 
Test score: 0.48794393906289096 
Test accuracy: 0.7860798361845612 

 
With stopwords: 
Train on 58620 samples, validate on 14655 samples 
Epoch 1/4 
58620/58620 - 315s 5ms/step - loss: 0.5036 - acc: 0.7758 - val_loss: 0.4918 - 
val_acc: 0.7801 
Epoch 2/4 
58620/58620 - 319s 5ms/step - loss: 0.4583 - acc: 0.8005 - val_loss: 0.4812 - 
val_acc: 0.7896 
Epoch 3/4 
58620/58620 - 325s 6ms/step - loss: 0.4385 - acc: 0.8110 - val_loss: 0.4822 - 
val_acc: 0.7842 
Epoch 4/4 
58620/58620 - 279s 5ms/step - loss: 0.4188 - acc: 0.8209 - val_loss: 0.4918 - 
val_acc: 0.7868 
14655/14655 - 10s 679us/step 
Test score: 0.491755419932954 
Test accuracy: 0.7868304332463418 

 
Top 3000 Words: 
Without stopwords: 
Train on 58620 samples, validate on 14655 samples 
Epoch 1/4 
58620/58620 - 390s 7ms/step - loss: 0.4988 - acc: 0.7776 - val_loss: 0.4894 - 
val_acc: 0.7885 
Epoch 2/4 
58620/58620 - 408s 7ms/step - loss: 0.4527 - acc: 0.8038 - val_loss: 0.4802 - 
val_acc: 0.7889 
Epoch 3/4 
58620/58620 - 551s 9ms/step - loss: 0.4301 - acc: 0.8155 - val_loss: 0.4850 - 
val_acc: 0.7857 
Epoch 4/4 
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58620/58620 - 730s 12ms/step - loss: 0.4055 - acc: 0.8293 - val_loss: 0.5110 - 
val_acc: 0.7872 
14655/14655 - 43s 3ms/step 
Test score: 0.5110026398664121 
Test accuracy: 0.7872398498887212 

 
With stopwords: 
Train on 58620 samples, validate on 14655 samples 
Epoch 1/4 
58620/58620 - 714s 12ms/step - loss: 0.5022 - acc: 0.7759 - val_loss: 0.4832 - 
val_acc: 0.7831 
Epoch 2/4 
58620/58620 - 492s 8ms/step - loss: 0.4560 - acc: 0.8024 - val_loss: 0.4859 - 
val_acc: 0.7834 
Epoch 3/4 
58620/58620 - 323s 6ms/step - loss: 0.4310 - acc: 0.8155 - val_loss: 0.4752 - 
val_acc: 0.7871 
Epoch 4/4 
58620/58620 - 327s 6ms/step - loss: 0.4078 - acc: 0.8287 - val_loss: 0.4976 - 
val_acc: 0.7816 
14655/14655 - 20s 1ms/step 
Test score: 0.4976094910590895 
Test accuracy: 0.7815762538464148 

 
Top 3500 Words: 
Without stopwords: 
Train on 58620 samples, validate on 14655 samples 
Epoch 1/4 
58620/58620 - 402s 7ms/step - loss: 0.4974 - acc: 0.7814 - val_loss: 0.4843 - 
val_acc: 0.7919 
Epoch 2/4 
58620/58620 - 408s 7ms/step - loss: 0.4473 - acc: 0.8068 - val_loss: 0.4711 - 
val_acc: 0.7896 
Epoch 3/4 
58620/58620 - 583s 10ms/step - loss: 0.4200 - acc: 0.8216 - val_loss: 0.4885 - 
val_acc: 0.7905 
Epoch 4/4 
58620/58620 - 717s 12ms/step - loss: 0.3921 - acc: 0.8351 - val_loss: 0.5249 - 
val_acc: 0.7875 
14655/14655 - 30s 2ms/step 
Test score: 0.524882550104939 
Test accuracy: 0.7875127942803695 

 

With stopwords: 
Train on 58620 samples, validate on 14655 samples 
Epoch 1/4 
58620/58620 - 323s 6ms/step - loss: 0.4993 - acc: 0.7782 - val_loss: 0.4894 - 
val_acc: 0.7891 
Epoch 2/4 
58620/58620 - 321s 5ms/step - loss: 0.4510 - acc: 0.8052 - val_loss: 0.4798 - 
val_acc: 0.7932 
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Epoch 3/4 
58620/58620 - 327s 6ms/step - loss: 0.4262 - acc: 0.8179 - val_loss: 0.4790 - 
val_acc: 0.7907 
Epoch 4/4 
58620/58620 - 248s 4ms/step - loss: 0.4023 - acc: 0.8306 - val_loss: 0.4906 - 
val_acc: 0.7913 
14655/14655 - 5s 355us/step 
Test score: 0.4906210924061196 
Test accuracy: 0.791334015645496 

 
Top 4000 Words: 
Without stopwords: 
Train on 58620 samples, validate on 14655 samples 
Epoch 1/4 
58620/58620 - 395s 7ms/step - loss: 0.4980 - acc: 0.7784 - val_loss: 0.4751 - 
val_acc: 0.7944 
Epoch 2/4 
58620/58620 - 408s 7ms/step - loss: 0.4451 - acc: 0.8085 - val_loss: 0.4731 - 
val_acc: 0.7963 
Epoch 3/4 
58620/58620 - 570s 10ms/step - loss: 0.4159 - acc: 0.8227 - val_loss: 0.4828 - 
val_acc: 0.7925 
Epoch 4/4 
58620/58620 - 726s 12ms/step - loss: 0.3878 - acc: 0.8365 - val_loss: 0.5269 - 
val_acc: 0.7905 
14655/14655 - 34s 2ms/step 
Test score: 0.5269294022456324 
Test accuracy: 0.7905151824868202 

 
With stopwords: 
Epoch 1/4 
58620/58620 - 718s 12ms/step - loss: 0.4981 - acc: 0.7790 - val_loss: 0.4679 - 
val_acc: 0.7963 
Epoch 2/4 
58620/58620 - 489s 8ms/step - loss: 0.4482 - acc: 0.8054 - val_loss: 0.4771 - 
val_acc: 0.7944 
Epoch 3/4 
58620/58620 - 321s 5ms/step - loss: 0.4206 - acc: 0.8205 - val_loss: 0.4705 - 
val_acc: 0.7998 
Epoch 4/4 
58620/58620 - 327s 6ms/step - loss: 0.3956 - acc: 0.8334 - val_loss: 0.4814 - 
val_acc: 0.7962 
14655/14655 - 20s 1ms/step 
Test score: 0.4814114273895952 
Test accuracy: 0.7961787785209922 

 
Deeper RNN models 

GRU Custom Word Embedding 1. Training 
Use tf.cast instead. 
Train on 58620 samples, validate on 14655 samples 
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Epoch 1/4 - 58620/58620 - 956s 16ms/step - loss: 0.5195 - acc: 0.7674 - val_loss: 
0.4987 - val_acc: 0.7745 
Epoch 2/4 - 58620/58620 - 449s 8ms/step - loss: 0.4708 - acc: 0.7942 - val_loss: 
0.4907 - val_acc: 0.7803 
Epoch 3/4 - 58620/58620 - 449s 8ms/step - loss: 0.4636 - acc: 0.7979 - val_loss: 
0.4979 - val_acc: 0.7752 
Epoch 4/4 - 58620/58620 - 474s 8ms/step - loss: 0.4517 - acc: 0.8037 - val_loss: 
0.4909 - val_acc: 0.7788 

 
GRU Custom Word Embedding 2. Training 
Train on 58620 samples, validate on 14655 samples 
Epoch 1/4 - 58620/58620 - 972s 17ms/step - loss: 0.5221 - acc: 0.7653 - val_loss: 
0.4965 - val_acc: 0.7821 
Epoch 2/4 - 58620/58620 - 451s 8ms/step - loss: 0.4755 - acc: 0.7919 - val_loss: 
0.4848 - val_acc: 0.7870 
Epoch 3/4 - 58620/58620 - 450s 8ms/step - loss: 0.4614 - acc: 0.7997 - val_loss: 
0.4822 - val_acc: 0.7881 
Epoch 4/4 - 58620/58620 - 474s 8ms/step - loss: 0.4598 - acc: 0.7991 - val_loss: 
0.4878 - val_acc: 0.7835 

 
GRU Pre-Trained Word Embedding 1. Training 
Train on 2594 samples, validate on 648 samples 
Epoch 1/10 - 2594/2594 - 99s 38ms/step - loss: 0.5894 - acc: 0.6370 - val_loss: 
0.5056 - val_acc: 0.7253 
Epoch 2/10 - 2594/2594 - 97s 37ms/step - loss: 0.4889 - acc: 0.7355 - val_loss: 
0.4542 - val_acc: 0.7577 
Epoch 3/10 - 2594/2594 - 97s 37ms/step - loss: 0.4233 - acc: 0.7911 - val_loss: 
0.4509 - val_acc: 0.7708 
Epoch 4/10 - 2594/2594 - 96s 37ms/step - loss: 0.3936 - acc: 0.8094 - val_loss: 
0.4190 - val_acc: 0.8017 
Epoch 5/10 - 2594/2594 - 96s 37ms/step - loss: 0.3666 - acc: 0.8259 - val_loss: 
0.3816 - val_acc: 0.8349 
Epoch 6/10 - 2594/2594 - 97s 37ms/step - loss: 0.3642 - acc: 0.8283 - val_loss: 
0.4349 - val_acc: 0.7909 
Epoch 7/10 - 2594/2594 - 96s 37ms/step - loss: 0.3819 - acc: 0.8051 - val_loss: 
0.3901 - val_acc: 0.8148 
Epoch 8/10 - 2594/2594 - 96s 37ms/step - loss: 0.3420 - acc: 0.8342 - val_loss: 
0.3805 - val_acc: 0.8187 
Epoch 9/10 - 2594/2594 - 96s 37ms/step - loss: 0.3281 - acc: 0.8466 - val_loss: 
0.3871 - val_acc: 0.8187 
Epoch 10/10 - 2594/2594 - 96s 37ms/step - loss: 0.3002 - acc: 0.8601 - val_loss: 
0.3801 - val_acc: 0.8372 

 
GRU Pre-Trained Word Embedding 2. Training 
Train on 2594 samples, validate on 648 samples 
Epoch 1/10 - 2594/2594 - 100s 39ms/step - loss: 0.5730 - acc: 0.6615 - val_loss: 
0.5270 - val_acc: 0.7176 
Epoch 2/10 - 2594/2594 - 98s 38ms/step - loss: 0.4445 - acc: 0.7783 - val_loss: 
0.4893 - val_acc: 0.7323 
Epoch 3/10 - 2594/2594 - 97s 37ms/step - loss: 0.4065 - acc: 0.7988 - val_loss: 
0.4315 - val_acc: 0.7909 
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Epoch 4/10 - 2594/2594 - 98s 38ms/step - loss: 0.3706 - acc: 0.8242 - val_loss: 
0.4288 - val_acc: 0.7971 
Epoch 5/10 - 2594/2594 - 98s 38ms/step - loss: 0.3831 - acc: 0.8202 - val_loss: 
0.4294 - val_acc: 0.7948 
Epoch 6/10 - 2594/2594 - 97s 38ms/step - loss: 0.3499 - acc: 0.8400 - val_loss: 
0.4380 - val_acc: 0.7731 
Epoch 7/10 - 2594/2594 - 96s 37ms/step - loss: 0.3387 - acc: 0.8404 - val_loss: 
0.4346 - val_acc: 0.8094 
Epoch 8/10 - 2594/2594 - 97s 37ms/step - loss: 0.4202 - acc: 0.7808 - val_loss: 
0.5180 - val_acc: 0.7153 
Epoch 9/10 - 2594/2594 - 97s 38ms/step - loss: 0.4340 - acc: 0.7847 - val_loss: 
0.4996 - val_acc: 0.7361 
Epoch 10/10 - 2594/2594 - 94s 36ms/step - loss: 0.4003 - acc: 0.8063 - val_loss: 
0.4986 - val_acc: 0.7438 

 
Double GRU Custom Word Embedding 1. Training 
Train on 58620 samples, validate on 14655 samples 
Epoch 1/4 - 58620/58620 - 1460s 25ms/step - loss: 0.5235 - acc: 0.7645 - val_loss: 
0.4985 - val_acc: 0.7795 
Epoch 2/4 - 58620/58620 - 1732s 30ms/step - loss: 0.4921 - acc: 0.7781 - val_loss: 
0.4806 - val_acc: 0.7873 
Epoch 3/4 - 58620/58620 - 1667s 28ms/step - loss: 0.4644 - acc: 0.7959 - val_loss: 
0.4769 - val_acc: 0.7898 
Epoch 4/4 - 58620/58620 - 1669s 28ms/step - loss: 0.4559 - acc: 0.8025 - val_loss: 
0.4754 - val_acc: 0.7899 

 
Double GRU Custom Word Embedding 2. Training 
Train on 58620 samples, validate on 14655 samples 
Epoch 1/4 - 58620/58620 - 1462s 25ms/step - loss: 0.5270 - acc: 0.7602 - val_loss: 
0.5163 - val_acc: 0.7627 
Epoch 2/4 - 58620/58620 - 1737s 30ms/step - loss: 0.4838 - acc: 0.7843 - val_loss: 
0.4854 - val_acc: 0.7835 
Epoch 3/4 - 58620/58620 - 1675s 29ms/step - loss: 0.4618 - acc: 0.7976 - val_loss: 
0.4798 - val_acc: 0.7881 
Epoch 4/4 - 58620/58620 - 1671s 29ms/step - loss: 0.4498 - acc: 0.8056 - val_loss: 
0.4785 - val_acc: 0.7889 

 
Double GRU Pre-Trained Word Embedding 1. Training 
Train on 2594 samples, validate on 648 samples 
Epoch 1/4 - 2594/2594 - 78s 30ms/step - loss: 0.5776 - acc: 0.6727 - val_loss: 
0.4415 - val_acc: 0.7886 
Epoch 2/4 - 2594/2594 - 146s 56ms/step - loss: 0.4607 - acc: 0.7660 - val_loss: 
0.4608 - val_acc: 0.7577 
Epoch 3/4 - 2594/2594 - 159s 61ms/step - loss: 0.4145 - acc: 0.8009 - val_loss: 
0.4013 - val_acc: 0.7924 
Epoch 4/4 - 2594/2594 - 152s 58ms/step - loss: 0.3773 - acc: 0.8217 - val_loss: 
0.3959 - val_acc: 0.7894 

 
Double GRU Pre-Trained Word Embedding 2. Training 
Train on 2594 samples, validate on 648 samples 
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Epoch 1/4 - 2594/2594 - 155s 60ms/step - loss: 0.5624 - acc: 0.7093 - val_loss: 
0.5097 - val_acc: 0.7215 
Epoch 2/4 - 2594/2594 - 143s 55ms/step - loss: 0.4514 - acc: 0.7681 - val_loss: 
0.4919 - val_acc: 0.7238 
Epoch 3/4 - 2594/2594 - 146s 56ms/step - loss: 0.3862 - acc: 0.8086 - val_loss: 
0.4610 - val_acc: 0.7577 
Epoch 4/4 - 2594/2594 - 151s 58ms/step - loss: 0.3716 - acc: 0.8155 - val_loss: 
0.4148 - val_acc: 0.7840 

 
LSTM Custom Word Embedding 1. Training 
Train on 58620 samples, validate on 14655 samples 
Epoch 1/4 - 58620/58620 - 1128s 19ms/step - loss: 0.5211 - acc: 0.7660 - val_loss: 
0.5048 - val_acc: 0.7796 
Epoch 2/4 - 58620/58620 - ETA: 0s - loss: 0.4845 - acc: 0.783 - 585s 10ms/step - 
loss: 0.4845 - acc: 0.7834 - val_loss: 0.5227 - val_acc: 0.7589 
Epoch 3/4 - 58620/58620 - 841s 14ms/step - loss: 0.4839 - acc: 0.7848 - val_loss: 
0.4924 - val_acc: 0.7807 
Epoch 4/4 - 58620/58620 - 834s 14ms/step - loss: 0.4666 - acc: 0.7969 - val_loss: 
0.4899 - val_acc: 0.7819 

 
LSTM Custom Word Embedding 2. Training 
Train on 58620 samples, validate on 14655 samples 
Epoch 1/4 - 58620/58620 - 1149s 20ms/step - loss: 0.5252 - acc: 0.7627 - val_loss: 
0.4896 - val_acc: 0.7847 
Epoch 2/4 - 58620/58620 - ETA: 0s - loss: 0.4894 - acc: 0.781 - 587s 10ms/step - 
loss: 0.4894 - acc: 0.7817 - val_loss: 0.4832 - val_acc: 0.7876 
Epoch 3/4 - 58620/58620 - 847s 14ms/step - loss: 0.4753 - acc: 0.7900 - val_loss: 
0.4815 - val_acc: 0.7879 
Epoch 4/4 - 58620/58620 - 842s 14ms/step - loss: 0.4708 - acc: 0.7917 - val_loss: 
0.4842 - val_acc: 0.7908 

 
LSTM Pre-Trained Word Embedding 1. Training 
Train on 2594 samples, validate on 648 samples 
Epoch 1/4 - 2594/2594 - 127s 49ms/step - loss: 0.3446 - acc: 0.8387 - val_loss: 
0.4305 - val_acc: 0.7840 
Epoch 2/4 - 2594/2594 - 120s 46ms/step - loss: 0.3925 - acc: 0.7859 - val_loss: 
0.4876 - val_acc: 0.7415 
Epoch 3/4 - 2594/2594 - 119s 46ms/step - loss: 0.4082 - acc: 0.7936 - val_loss: 
0.4406 - val_acc: 0.7708 
Epoch 4/4 - 2594/2594 - 124s 48ms/step - loss: 0.3680 - acc: 0.8267 - val_loss: 
0.4674 - val_acc: 0.7662 

 
LSTM Pre-Trained Word Embedding 2. Training 

 

Train on 2594 samples, validate on 648 samples 
Epoch 1/4 - 2594/2594 - 127s 49ms/step - loss: 0.3242 - acc: 0.8529 - val_loss: 
0.4200 - val_acc: 0.8025 
Epoch 2/4 - 2594/2594 - 119s 46ms/step - loss: 0.3009 - acc: 0.8604 - val_loss: 
0.4506 - val_acc: 0.7793 
Epoch 3/4 - 2594/2594 - 119s 46ms/step - loss: 0.2837 - acc: 0.8741 - val_loss: 
0.4175 - val_acc: 0.8040 
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Epoch 4/4 - 2594/2594 - 124s 48ms/step - loss: 0.2627 - acc: 0.8843 - val_loss: 
0.4693 - val_acc: 0.7986 

 
Double LSTM Custom Word Embedding 1. Training 
Train on 58620 samples, validate on 14655 samples 
Epoch 1/4 - 58620/58620 - 2153s 37ms/step - loss: 0.5186 - acc: 0.7671 - val_loss: 
0.4936 - val_acc: 0.7782 
Epoch 2/4 - 58620/58620 - 2072s 35ms/step - loss: 0.4815 - acc: 0.7879 - val_loss: 
0.4965 - val_acc: 0.7790 
Epoch 3/4 - 58620/58620 - 1633s 28ms/step - loss: 0.4697 - acc: 0.7939 - val_loss: 
0.4896 - val_acc: 0.7810 
Epoch 4/4 - 58620/58620 - 1320s 23ms/step - loss: 0.4587 - acc: 0.7996 - val_loss: 
0.4839 - val_acc: 0.7883 

 
Double LSTM Custom Word Embedding 2. Training 
Train on 58620 samples, validate on 14655 samples 
Epoch 1/4 - 58620/58620 - 2189s 37ms/step - loss: 0.5328 - acc: 0.7554 - val_loss: 
0.4933 - val_acc: 0.7793 
Epoch 2/4 - 58620/58620 - 2109s 36ms/step - loss: 0.4855 - acc: 0.7832 - val_loss: 
0.4821 - val_acc: 0.7915 
Epoch 3/4 - 58620/58620 - 1626s 28ms/step - loss: 0.4697 - acc: 0.7931 - val_loss: 
0.4823 - val_acc: 0.7881 
Epoch 4/4 - 58620/58620 - 1309s 22ms/step - loss: 0.4631 - acc: 0.7979 - val_loss: 
0.4799 - val_acc: 0.7913 

 
Double LSTM Pre-Trained Word Embedding 1. Training 
Train on 2594 samples, validate on 648 samples 
Epoch 1/4 - 2594/2594 - 244s 94ms/step - loss: 0.5824 - acc: 0.6887 - val_loss: 
0.5354 - val_acc: 0.7361 
Epoch 2/4 - 2594/2594 - 162s 62ms/step - loss: 0.4500 - acc: 0.7939 - val_loss: 
0.4010 - val_acc: 0.8040 
Epoch 3/4 - 2594/2594 - 160s 62ms/step - loss: 0.3918 - acc: 0.8198 - val_loss: 
0.3708 - val_acc: 0.8187 
Epoch 4/4 - 2594/2594 - 159s 61ms/step - loss: 0.3972 - acc: 0.8042 - val_loss: 
0.4470 - val_acc: 0.7623 

 
Double LSTM Pre-Trained Word Embedding 2. Training 
Train on 2594 samples, validate on 648 samples 
Epoch 1/4 - 2594/2594 - 166s 64ms/step - loss: 0.6029 - acc: 0.6582 - val_loss: 
0.4774 - val_acc: 0.7731 
Epoch 2/4 - 2594/2594 - 183s 70ms/step - loss: 0.4556 - acc: 0.7708 - val_loss: 
0.3950 - val_acc: 0.8110 
Epoch 3/4 - 2594/2594 - 177s 68ms/step - loss: 0.4200 - acc: 0.7955 - val_loss: 
0.3603 - val_acc: 0.8403 
Epoch 4/4 - 2594/2594 - 162s 62ms/step - loss: 0.3842 - acc: 0.8190 - val_loss: 
0.3579 - val_acc: 0.8380 

 
Final Trainings 

CNN 
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1. Training 
Train on 2594 samples, validate on 648 samples 
Epoch 1/2 
2594/2594 - 34s 13ms/step - loss: 0.5817 - acc: 0.6874 - val_loss: 0.3896 - val_acc: 
0.8187 
Epoch 2/2 
2594/2594 - 33s 13ms/step - loss: 0.3589 - acc: 0.8311 - val_loss: 0.3051 - val_acc: 
0.8588 

 
2. Training 
Train on 2594 samples, validate on 648 samples 
Epoch 1/2 
2594/2594 - 31s 12ms/step - loss: 0.5995 - acc: 0.6843 - val_loss: 0.4206 - val_acc: 
0.8148 
Epoch 2/2 
2594/2594 - 30s 12ms/step - loss: 0.3807 - acc: 0.8250 - val_loss: 0.3220 - val_acc: 
0.8457 

 
3. Training 
Train on 2594 samples, validate on 648 samples 
Epoch 1/2 
2594/2594 - 57s 22ms/step - loss: 0.3557 - acc: 0.8308 - val_loss: 0.3083 - val_acc: 
0.8542 
Epoch 2/2 
2594/2594 - 57s 22ms/step - loss: 0.2916 - acc: 0.8770 - val_loss: 0.3039 - val_acc: 
0.8688 

 
4. Training 
Train on 2594 samples, validate on 648 samples 
Epoch 1/2 
2594/2594 - 38s 14ms/step - loss: 0.5744 - acc: 0.6987 - val_loss: 0.3911 - val_acc: 
0.8140 
Epoch 2/2 
2594/2594 - 37s 14ms/step - loss: 0.3503 - acc: 0.8338 - val_loss: 0.3325 - val_acc: 
0.8380 

 
GRU + Dropout 

 

1. Training 
Train on 2594 samples, validate on 648 samples 
Epoch 1/6 
2594/2594 - 93s 36ms/step - loss: 0.5794 - acc: 0.6663 - val_loss: 0.5211 - val_acc: 
0.7207 
Epoch 2/6 
2594/2594 - 37s 14ms/step - loss: 0.4618 - acc: 0.7645 - val_loss: 0.4597 - val_acc: 
0.7693 
Epoch 3/6 
2594/2594 - 37s 14ms/step - loss: 0.4403 - acc: 0.7841 - val_loss: 0.4715 - val_acc: 
0.7639 
Epoch 4/6 
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2594/2594 - 38s 15ms/step - loss: 0.4096 - acc: 0.8067 - val_loss: 0.4516 - val_acc: 
0.7631 
Epoch 5/6 
2594/2594 - 41s 16ms/step - loss: 0.3955 - acc: 0.8057 - val_loss: 0.4586 - val_acc: 
0.7531 
Epoch 6/6 
2594/2594 - 41s 16ms/step - loss: 0.3723 - acc: 0.8217 - val_loss: 0.4454 - val_acc: 
0.7878 

 
2. Training 
Train on 2594 samples, validate on 648 samples 
Epoch 1/6 
2594/2594 - 42s 16ms/step - loss: 0.5965 - acc: 0.6372 - val_loss: 0.5304 - val_acc: 
0.7114 
Epoch 2/6 
2594/2594 - 45s 17ms/step - loss: 0.4850 - acc: 0.7452 - val_loss: 0.5080 - val_acc: 
0.7083 
Epoch 3/6 
2594/2594 - 41s 16ms/step - loss: 0.4555 - acc: 0.7675 - val_loss: 0.4674 - val_acc: 
0.7623 
Epoch 4/6 
2594/2594 - 63s 24ms/step - loss: 0.4257 - acc: 0.7843 - val_loss: 0.4535 - val_acc: 
0.7639 
Epoch 5/6 
2594/2594 - 65s 25ms/step - loss: 0.3935 - acc: 0.8113 - val_loss: 0.4334 - val_acc: 
0.7793 
Epoch 6/6 
2594/2594 - 65s 25ms/step - loss: 0.3679 - acc: 0.8261 - val_loss: 0.4217 - val_acc: 
0.7971 

 
 

3. Training 
Train on 2594 samples, validate on 648 samples 
Epoch 1/6 
2594/2594 - 68s 26ms/step - loss: 0.5861 - acc: 0.6486 - val_loss: 0.5218 - val_acc: 
0.7191 
Epoch 2/6 
2594/2594 - 62s 24ms/step - loss: 0.4794 - acc: 0.7496 - val_loss: 0.4705 - val_acc: 
0.7508 
Epoch 3/6 
2594/2594 - 62s 24ms/step - loss: 0.4181 - acc: 0.7936 - val_loss: 0.4195 - val_acc: 
0.8040 
Epoch 4/6 
2594/2594 - 50s 19ms/step - loss: 0.3929 - acc: 0.8096 - val_loss: 0.4551 - val_acc: 
0.7639 
Epoch 5/6 
2594/2594 - 36s 14ms/step - loss: 0.4071 - acc: 0.7976 - val_loss: 0.4669 - val_acc: 
0.7577 
Epoch 6/6 
2594/2594 - 36s 14ms/step - loss: 0.3840 - acc: 0.8152 - val_loss: 0.4292 - val_acc: 
0.8009 
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4. Training 
Train on 2594 samples, validate on 648 samples 
Epoch 1/6 
2594/2594 - 44s 17ms/step - loss: 0.5897 - acc: 0.6505 - val_loss: 0.5211 - val_acc: 
0.7215 
Epoch 2/6 
2594/2594 - 47s 18ms/step - loss: 0.4784 - acc: 0.7537 - val_loss: 0.4866 - val_acc: 
0.7284 
Epoch 3/6 
2594/2594 - 72s 28ms/step - loss: 0.4595 - acc: 0.7554 - val_loss: 0.4373 - val_acc: 
0.7693 
Epoch 4/6 
2594/2594 - 71s 27ms/step - loss: 0.4178 - acc: 0.7922 - val_loss: 0.4382 - val_acc: 
0.7901 
Epoch 5/6 
2594/2594 - 72s 28ms/step - loss: 0.3894 - acc: 0.8167 - val_loss: 0.3934 - val_acc: 
0.8140 
Epoch 6/6 
2594/2594 - 69s 27ms/step - loss: 0.3955 - acc: 0.8157 - val_loss: 0.3992 - val_acc: 
0.8002 

 
LSTM + Dropout 

 

1. Training 
Train on 2594 samples, validate on 648 samples 
Epoch 1/6 
2594/2594 - 89s 34ms/step - loss: 0.5877 - acc: 0.6586 - val_loss: 0.5043 - val_acc: 
0.7438 
Epoch 2/6 
2594/2594 - 86s 33ms/step - loss: 0.4705 - acc: 0.7639 - val_loss: 0.4621 - val_acc: 
0.7616 
Epoch 3/6 
2594/2594 - 87s 34ms/step - loss: 0.4279 - acc: 0.7818 - val_loss: 0.4817 - val_acc: 
0.7461 
Epoch 4/6 
2594/2594 - 63s 24ms/step - loss: 0.3908 - acc: 0.8121 - val_loss: 0.4427 - val_acc: 
0.7785 
Epoch 5/6 
2594/2594 - 48s 18ms/step - loss: 0.3955 - acc: 0.8036 - val_loss: 0.4648 - val_acc: 
0.7284 
Epoch 6/6 
2594/2594 - 50s 19ms/step - loss: 0.4058 - acc: 0.7862 - val_loss: 0.4031 - val_acc: 
0.7847 

 

2. Training 
Train on 2594 samples, validate on 648 samples 
Epoch 1/6 
2594/2594 - 82s 31ms/step - loss: 0.5898 - acc: 0.6473 - val_loss: 0.4750 - val_acc: 
0.7670 
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2594/2594 - 78s 30ms/step - loss: 0.4698 - acc: 0.7658 - val_loss: 0.4607 - val_acc: 
0.7685 
Epoch 3/6 
2594/2594 - 64s 25ms/step - loss: 0.4556 - acc: 0.7643 - val_loss: 0.4440 - val_acc: 
0.7809 
Epoch 4/6 
2594/2594 - 49s 19ms/step - loss: 0.4125 - acc: 0.7959 - val_loss: 0.4058 - val_acc: 
0.7971 
Epoch 5/6 
2594/2594 - 54s 21ms/step - loss: 0.4173 - acc: 0.8067 - val_loss: 0.3935 - val_acc: 
0.8272 
Epoch 6/6 
2594/2594 - 76s 29ms/step - loss: 0.4441 - acc: 0.7866 - val_loss: 0.4195 - val_acc: 
0.8241 

 
3. Training 
Train on 2594 samples, validate on 648 samples 
Epoch 1/6 
2594/2594 - 79s 31ms/step - loss: 0.4204 - acc: 0.7905 - val_loss: 0.3883 - val_acc: 
0.8125 
Epoch 2/6 
2594/2594 - 78s 30ms/step - loss: 0.3840 - acc: 0.8192 - val_loss: 0.3872 - val_acc: 
0.8133 
Epoch 3/6 
2594/2594 - 50s 19ms/step - loss: 0.3735 - acc: 0.8346 - val_loss: 0.3891 - val_acc: 
0.8110 
Epoch 4/6 
2594/2594 - 42s 16ms/step - loss: 0.3644 - acc: 0.8337 - val_loss: 0.3690 - val_acc: 
0.8302 
Epoch 5/6 
2594/2594 - 42s 16ms/step - loss: 0.3395 - acc: 0.8408 - val_loss: 0.4090 - val_acc: 
0.7940 
Epoch 6/6 
2594/2594 - 43s 16ms/step - loss: 0.3424 - acc: 0.8398 - val_loss: 0.3667 - val_acc: 
0.8256 

 
4. Training 
Train on 2594 samples, validate on 648 samples 
Epoch 1/6 
2594/2594 - 81s 31ms/step - loss: 0.5868 - acc: 0.6559 - val_loss: 0.5129 - val_acc: 
0.7137 
Epoch 2/6 
2594/2594 - 78s 30ms/step - loss: 0.4794 - acc: 0.7581 - val_loss: 0.4390 - val_acc: 
0.7755 
Epoch 3/6 
2594/2594 - 77s 30ms/step - loss: 0.4713 - acc: 0.7483 - val_loss: 0.4662 - val_acc: 
0.7685 
Epoch 4/6 
2594/2594 - 57s 22ms/step - loss: 0.4337 - acc: 0.7805 - val_loss: 0.3937 - val_acc: 
0.8071 
Epoch 5/6 



Deep learning for detecting integrity risks in text documents 95 

Churer Schriften zur Informationswissenschaft – Schrift 103 Master Thesis Kalbermatter 

 

 

 

 

2594/2594 - 78s 30ms/step - loss: 0.4199 - acc: 0.7995 - val_loss: 0.4025 - val_acc: 
0.8102 
Epoch 6/6 
2594/2594 - 78s 30ms/step - loss: 0.3971 - acc: 0.8074 - val_loss: 0.3836 - val_acc: 
0.8272 

 
LSTM Bidirectional 

 

1. Training 
Train on 2594 samples, validate on 648 samples 
Epoch 1/6 - 2594/2594 - 51s 20ms/step - loss: 0.6219 - acc: 0.6523 - val_loss: 
0.5210 - val_acc: 0.7423 
Epoch 2/6 - 2594/2594 - 48s 19ms/step - loss: 0.4674 - acc: 0.7697 - val_loss: 
0.4334 - val_acc: 0.7894 
Epoch 3/6 - 2594/2594 - 48s 19ms/step - loss: 0.4025 - acc: 0.8098 - val_loss: 
0.4000 - val_acc: 0.8133 
Epoch 4/6 - 2594/2594 - 48s 19ms/step - loss: 0.4110 - acc: 0.8001 - val_loss: 
0.3917 - val_acc: 0.8117 
Epoch 5/6 - 2594/2594 - 48s 19ms/step - loss: 0.3930 - acc: 0.8153 - val_loss: 
0.4010 - val_acc: 0.8156 
Epoch 6/6 - 2594/2594 - 48s 19ms/step - loss: 0.3797 - acc: 0.8252 - val_loss: 
0.3750 - val_acc: 0.8117 

 
2. Training 
Train on 2594 samples, validate on 648 samples 
Epoch 1/6 - 2594/2594- 98s 38ms/step - loss: 0.6177 - acc: 0.6357 - val_loss: 0.5281 
- val_acc: 0.6944 
Epoch 2/6 - 2594/2594- 99s 38ms/step - loss: 0.4573 - acc: 0.7901 - val_loss: 0.4350 
- val_acc: 0.7917 
Epoch 3/6 - 2594/2594- 99s 38ms/step - loss: 0.4189 - acc: 0.8009 - val_loss: 0.4354 
- val_acc: 0.8009 
Epoch 4/6 - 2594/2594- 95s 36ms/step - loss: 0.4316 - acc: 0.7899 - val_loss: 0.4395 
- val_acc: 0.7917 
Epoch 5/6 - 2594/2594- 94s 36ms/step - loss: 0.4864 - acc: 0.7286 - val_loss: 0.5286 
- val_acc: 0.7315 
Epoch 6/6 - 2594/2594- 94s 36ms/step - loss: 0.4921 - acc: 0.7463 - val_loss: 0.4867 
- val_acc: 0.7569 

 

3. Training 
Train on 2594 samples, validate on 648 samples 
Epoch 1/6 - 2594/2594- 105s 40ms/step - loss: 0.6200 - acc: 0.6342 - val_loss: 
0.5056 - val_acc: 0.7554 
Epoch 2/6 - 2594/2594- 99s 38ms/step - loss: 0.5154 - acc: 0.7114 - val_loss: 0.5134 
- val_acc: 0.7423 
Epoch 3/6 - 2594/2594- 99s 38ms/step - loss: 0.5084 - acc: 0.7388 - val_loss: 0.4871 
- val_acc: 0.7508 
Epoch 4/6 - 2594/2594- 95s 37ms/step - loss: 0.4889 - acc: 0.7438 - val_loss: 0.4789 
- val_acc: 0.7554 
Epoch 5/6 - 2594/2594- 95s 37ms/step - loss: 0.4703 - acc: 0.7540 - val_loss: 0.4675 
- val_acc: 0.7569 



Deep learning for detecting integrity risks in text documents 96 

Churer Schriften zur Informationswissenschaft – Schrift 103 Master Thesis Kalbermatter 

 

 

 

 

Epoch 6/6 - 2594/2594- 95s 36ms/step - loss: 0.4416 - acc: 0.7795 - val_loss: 0.4394 
- val_acc: 0.7878 

 
4. Training 
Train on 2594 samples, validate on 648 samples 
Epoch 1/6 - 2594/2594- 54s 21ms/step - loss: 0.6145 - acc: 0.6345 - val_loss: 0.5224 
- val_acc: 0.7585 
Epoch 2/6 - 2594/2594- 51s 20ms/step - loss: 0.4677 - acc: 0.7704 - val_loss: 0.4252 
- val_acc: 0.8117 
Epoch 3/6 - 2594/2594- 51s 20ms/step - loss: 0.4306 - acc: 0.8001 - val_loss: 0.4413 
- val_acc: 0.7878 
Epoch 4/6 - 2594/2594- 51s 19ms/step - loss: 0.4102 - acc: 0.8082 - val_loss: 0.4131 
- val_acc: 0.8264 
Epoch 5/6 - 2594/2594- 50s 19ms/step - loss: 0.3961 - acc: 0.8211 - val_loss: 0.4231 
- val_acc: 0.7870 
Epoch 6/6 - 2594/2594- 50s 19ms/step - loss: 0.3877 - acc: 0.8225 - val_loss: 0.3836 
- val_acc: 0.8272 
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