Capturing and Classifying Ontology Evolution in News Media Archives

Albert Weichselbraun*, Arno Scharl and Wei Liu

* Vienna University of Economics and Business Administration
 Department of Information Systems and Operations
 Augasse 2-6, 1090 Vienna
 albert.weichselbraun@wu-wien.ac.at

September 2nd, 2008
Agenda

Problem & Motivation

Method
- Data Driven Ontology Changes
- Sampling
- Ontology Learning
- Limitations

Ontology Evolution
- Domain Terminology
- Domain Relations
- A Small Example

Evolution Patterns

Outlook & Conclusions
Problem & Motivation

- Domain knowledge evolves continually
 → Most real world ontologies do change
- Stojanovic et al.: Ontology evolution process of adaptation of an ontology
 - To arisen changes
 - Maintaining consistency (ontology + artifacts)
- Two research projects (AVALON, RAVEN)
Data Driven Ontology Change

Stojanovic et al. \(\Delta \)

(i) explicit, usage driven changes

(ii) implicit, data-driven changes

This work focuses on \textit{data-driven} changes.

\(\rightarrow \) observe changes in a domain
Requirements

ontology analysis tool

- standardized process to track changes in the domain
 → ontology learning
 - less laborious
 - no inter-/intra personal variations
 - lightweight ontologies
- well defined and volatile domain
Sampling

well defined domain

- media coverage on energy sources
- data repository: webLyzard - sample based mirroring
 - 156 news media sites from five English-speaking countries
 - weekly mirrors; from November 2005 to August 2006
Ontology Learning

- **target corpus** → **ref corpus** → **Co-Occurrence Analysis**
- **Lexical Analyzer**
- **Trigger Phrases** → **Hearst Patterns** → **Disambiguation** → **WordNet**
- **Sentence-Level** → **Page-Level**
- **external source** → **Domain Expert(s)** → **Seed Ontology** → **Extended Ontology**
- **Concept Positioning** → **Most Active Concepts**
- **Relationship Discovery** → **Spr/Activation** → **Head Nouns** → **WordNet**
Ontology Learning
Ontology Learning
Limitations

- detect changes to the *domain language*, but not changes of the conceptualization
- not *one* authoritative usage, but *averages* (e.g. *alternative energy*)
- handling of salience, limited disambiguation
- very coarse handling of relation types (hierarchical)
domain terminology

- **core domain terminology** comprises frequently used concepts; constantly included into the domain’s ontology

- **extended domain terminology** additional domain concepts; lower relevance/importance; used for special topics within the domain (e.g. nuclear power,); not as universally used as the core domain terminology

- **peripheral terminology** is used documents; does not carry important domain concepts; not included in the domain ontology
Ontology Evolution

domain relations

- **core domain relations** featuring essential relations between core domain vocabulary,
- **extended domain relations** comprising relations to extended domain vocabulary as well as non-essential relations between the core vocabulary, and
- **Peripheral domain relations** which do not carry enough weight to be included into the ontology.

influenced by: scope, granularity, etc.
A Small Example

Figure: Evolution of the concept “oil” from November 2005 to August 2006.
Evolution Patterns

Terminology

- Changes in a term’s importance; focus of media coverage shifts
- Change of the assigned concept
 - Change in term focus oil
 - Change in term assignment fuel, storage
 - Change in context Sri Lanka, Maldives
Visualization

Figure: Extended Ontology (November 2005)
Figure: Extended Ontology (February 2006)
Figure: Extended Ontology (May 2006)
Visualization

Figure: Extended Ontology (August 2006)
Conclusions

- system for tracking changes in domain ontologies
- visualization
- empirical study (online media)
 - three levels of domain concepts and relations (core, extended and peripheral)
 - observed changes to a term’s importance and meaning
Outlook

- tight integration with the *Media Watch on Climate Change*
- formalization of changes to the ontology
 → temporal reasoning
- improvements to the ontology learning component
 - relation type detection
 - user feedback (Δ community versus domain experts)